@article{WandtWinkelbeinerBornhorstetal.2021, author = {Wandt, Viktoria Klara Veronika and Winkelbeiner, Nicola Lisa and Bornhorst, Julia and Witt, Barbara and Raschke, Stefanie and Simon, Luise and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A matter of concern}, series = {Redox Biology}, volume = {41}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.redox.2021.101877}, pages = {13}, year = {2021}, abstract = {Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability}, language = {en} } @misc{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola Lisa and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1021}, issn = {1866-8372}, doi = {10.25932/publishup-48483}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484831}, pages = {21}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @article{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola Lisa and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186600}, pages = {19}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @article{EbertZiemannWandtetal.2020, author = {Ebert, Franziska and Ziemann, Vanessa and Wandt, Viktoria Klara Veronika and Witt, Barbara and M{\"u}ller, Sandra Marie and Guttenberger, Nikolaus and Bankoglu, Ezgi Eyluel and Stopper, Helga and Raber, Georg and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {Cellular toxicological characterization of a thioxolated arsenic-containing hydrocarbon}, series = {Journal of trace elements in medicine and biology}, volume = {61}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {M{\"u}nchen}, doi = {10.1016/j.jtemb.2020.126563}, year = {2020}, abstract = {Arsenolipids, especially arsenic-containing hydrocarbons (AsHC), are an emerging class of seafood originating contaminants. Here we toxicologically characterize a recently identified oxo-AsHC 332 metabolite, thioxo-AsHC 348 in cultured human liver (HepG2) cells. Compared to results of previous studies of the parent compound oxo-AsHC 332, thioxo-AsHC 348 substantially affected cell viability in the same concentration range but exerted about 10-fold lower cellular bioavailability. Similar to oxo-AsHC 332, thioxo-AsHC 348 did not substantially induce oxidative stress nor DNA damage. Moreover, in contrast to oxo-AsHC 332 mitochondria seem not to be a primary subcellular toxicity target for thioxo-AsHC 348. This study indicates that thioxo-AsHC 348 is at least as toxic as its parent compound oxo-AsHC 332 but very likely acts via a different mode of toxic action, which still needs to be identified.}, language = {en} } @article{FinkeWinkelbeinerLossowetal.2020, author = {Finke, Hannah and Winkelbeiner, Nicola Lisa and Lossow, Kristina and Hertel, Barbara and Wandt, Viktoria Klara Veronika and Schwarz, Maria and Pohl, Gabriele and Kopp, Johannes Florian and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {Effects of a Cumulative, Suboptimal Supply of Multiple Trace Elements in Mice}, series = {Molecular nutrition \& food research}, volume = {64}, journal = {Molecular nutrition \& food research}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-4125}, doi = {10.1002/mnfr.202000325}, year = {2020}, abstract = {Scope: Trace element (TE) deficiencies often occur accumulated, as nutritional intake is inadequate for several TEs, concurrently. Therefore, the impact of a suboptimal supply of iron, zinc, copper, iodine, and selenium on the TE status, health parameters, epigenetics, and genomic stability in mice are studied. Methods and results: Male mice receive reduced or adequate amounts of TEs for 9 weeks. The TE status is analyzed mass-spectrometrically in serum and different tissues. Furthermore, gene and protein expression of TE biomarkers are assessed with focus on liver. Iron concentrations are most sensitive toward a reduced supply indicated by increased serum transferrin levels and altered hepatic expression of iron-related genes. Reduced TE supply results in smaller weight gain but higher spleen and heart weights. Additionally, inflammatory mediators in serum and liver are increased together with hepatic genomic instability. However, global DNA (hydroxy)methylation is unaffected by the TE modulation. Conclusion: Despite homeostatic regulation of most TEs in response to a low intake, this condition still has substantial effects on health parameters. It appears that the liver and immune system react particularly sensitive toward changes in TE intake. The reduced Fe status might be the primary driver for the observed effects.}, language = {en} } @article{FinkeWandtEbertetal.2020, author = {Finke, Hannah and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Guttenberger, Nikolaus and Glabonjat, Ronald A. and Stiboller, Michael and Francesconi, Kevin A. and Raber, Georg and Schwerdtle, Tanja}, title = {Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells}, volume = {12}, number = {7}, publisher = {Oxford University}, address = {Cambridge}, doi = {10.1039/d0mt00073f}, pages = {1159 -- 1170}, year = {2020}, abstract = {Arsenolipids include a wide range of organic arsenic species that occur naturally in seafood and thereby contribute to human arsenic exposure. Recently arsenic-containing phosphatidylcholines (AsPCs) were identified in caviar, fish, and algae. In this first toxicological assessment of AsPCs, we investigated the stability of both the oxo- and thioxo-form of an AsPC under experimental conditions, and analyzed cell viability, indicators of genotoxicity and biotransformation in human liver cancer cells (HepG2). Precise toxicity data could not be obtained owing to the low solubility in the cell culture medium of the thioxo-form, and the ease of hydrolysis of the oxo-form, and to a lesser degree the thioxo-form. Hydrolysis resulted amongst others in the respective constituent arsenic-containing fatty acid (AsFA). Incubation of the cells with oxo-AsPC resulted in a toxicity similar to that determined for the hydrolysis product oxo-AsFA alone, and there were no indices for genotoxicity. Furthermore, the oxo-AsPC was readily taken up by the cells resulting in high cellular arsenic concentrations (50 μM incubation: 1112 ± 146 μM As cellular), whereas the thioxo-AsPC was substantially less bioavailable (50 μM incubation: 293 ± 115 μM As cellular). Speciation analysis revealed biotransformation of the AsPCs to a series of AsFAs in the culture medium, and, in the case of the oxo-AsPC, to as yet unidentified arsenic species in cell pellets. The results reveal the difficulty of toxicity studies of AsPCs in vitro, indicate that their toxicity might be largely governed by their arsenic fatty acid content and suggest a multifaceted human metabolism of food derived complex arsenolipids.}, language = {en} } @phdthesis{Wandt2021, author = {Wandt, Viktoria Klara Veronika}, title = {Trace elements, ageing, and sex}, school = {Universit{\"a}t Potsdam}, pages = {iii, 204}, year = {2021}, language = {en} } @inproceedings{WandtWinkelbeinerLossowetal.2021, author = {Wandt, Viktoria Klara Veronika and Winkelbeiner, Nicola and Loßow, Kristina and Kopp, Johannes and Simon, Luise and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {Trace elements, ageing, and sex. Impact on genome stability}, series = {Naunyn-Schmiedeberg's archives of pharmacology}, volume = {394}, booktitle = {Naunyn-Schmiedeberg's archives of pharmacology}, number = {Suppl. 1}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0028-1298}, doi = {10.1007/s00210-021-02066-6}, pages = {S13 -- S13}, year = {2021}, language = {en} }