@article{KolmakovaGladyshevFonvielleetal.2019, author = {Kolmakova, Olesya V. and Gladyshev, Michail I. and Fonvielle, Jeremy Andre and Ganzert, Lars and Hornick, Thomas and Grossart, Hans-Peter}, title = {Effects of zooplankton carcasses degradation on freshwater bacterial community composition and implications for carbon cycling}, series = {Environmental microbiology}, volume = {21}, journal = {Environmental microbiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.14418}, pages = {34 -- 49}, year = {2019}, abstract = {Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh C-13-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter.}, language = {en} } @article{MasigolKhodaparastWoodhouseetal.2019, author = {Masigol, Hossein and Khodaparast, Seyed Akbar and Woodhouse, Jason Nicholas and Rojas Jim{\´e}nez, Keilor and Fonvielle, Jeremy Andre and Rezakhani, Forough and Mostowfizadeh-Ghalamfarsa, Reza and Neubauer, Darshan and Goldhammer, Tobias and Grossart, Hans-Peter}, title = {The contrasting roles of aquatic fungi and oomycetes in the degradation and transformation of polymeric organic matter}, series = {Limnology and oceanography}, volume = {64}, journal = {Limnology and oceanography}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, pages = {2662 -- 2678}, year = {2019}, abstract = {Studies on the ecological role of fungi and, to a lesser extent, oomycetes, are receiving increasing attention, mainly due to their participation in the cycling of organic matter in aquatic ecosystems. To unravel their importance in humification processes, we isolated several strains of fungi and oomycetes from Anzali lagoon, Iran. We then performed taxonomic characterization by morphological and molecular methods, analyzed the ability to degrade several polymeric substrates, performed metabolic fingerprinting with Ecoplates, and determined the degradation of humic substances (HS) using liquid chromatography-organic carbon detection. Our analyses highlighted the capacity of aquatic fungi to better degrade a plethora of organic molecules, including complex polymers. Specifically, we were able to demonstrate not only the utilization of these complex polymers, but also the role of fungi in the production of HS. In contrast, oomycetes, despite some morphological and physiological similarities with aquatic fungi, exhibited a propensity toward opportunism, quickly benefitting from the availability of small organic molecules, while exhibiting sensitivity toward more complex polymers. Despite their contrasting roles, our study highlights the importance of both oomycetes and fungi in aquatic organic matter transformation and cycling with potential implications for the global carbon cycle.}, language = {en} } @article{PerkinsGanzertRojasJimenezetal.2019, author = {Perkins, Anita K. and Ganzert, Lars and Rojas-Jimenez, Keilor and Fonvielle, Jeremy Andre and Hose, Grant C. and Grossart, Hans-Peter}, title = {Highly diverse fungal communities in carbon-rich aquifers of two contrasting lakes in Northeast Germany}, series = {Fungal ecology}, volume = {41}, journal = {Fungal ecology}, publisher = {Elsevier}, address = {Oxford}, issn = {1754-5048}, doi = {10.1016/j.funeco.2019.04.004}, pages = {116 -- 125}, year = {2019}, abstract = {Fungi are an important component of microbial communities and are well known for their ability to decompose refractory, highly polymeric organic matter. In soils and aquatic systems, fungi play an important role in carbon processing, however, their diversity, community structure and function as well as ecological role, particularly in groundwater, are poorly studied. The aim of this study was to examine the fungal community composition, diversity and function in groundwater from 16 boreholes located in the vicinity of two lakes in NE Germany that are characterized by contrasting trophic status. The analysis of 28S rRNA gene sequences amplified from the groundwater revealed high fungal diversity arid clear differences in community structure between the aquifers. Most sequences were assigned to Ascomycota and Basidiomycota, but members of Chytridiomycota, Cryptomycota, Zygomycota, Blastocladiomycota, Glomeromycota and Neocallimastigomycota were also detected. In addition, 27 species of fungi were successfully isolated from the groundwater samples and tested for their ability to decompose complex organic polymers - the predominant carbon source in the groundwater. Most isolates showed positive activities for at least one of the tested polymer types, with three strains, belonging to the genera Gibberella, Isaria and Cadophora, able to decompose all tested substrates. Our results highlight the high diversity of fungi in groundwater, and point to their important ecological role in breaking down highly polymeric organic matter in these isolated microbial habitats. (C) 2019 Elsevier Ltd and British Mycological Society. All rights reserved.}, language = {en} }