@article{TiscarenoMitchellMurrayetal.2013, author = {Tiscareno, Matthew S. and Mitchell, Colin J. and Murray, Carl D. and Di Nino, Daiana and Hedman, Matthew M. and Schmidt, J{\"u}rgen and Burns, Joseph A. and Cuzzi, Jeffrey N. and Porco, Carolyn C. and Beurle, Kevin and Evans, Michael W.}, title = {Observations of Ejecta clouds produced by impacts onto Saturn's rings}, series = {Science}, volume = {340}, journal = {Science}, number = {6131}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1233524}, pages = {460 -- 464}, year = {2013}, abstract = {We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system.}, language = {en} }