@misc{WackervonElert2001, author = {Wacker, Alexander and von Elert, Eric}, title = {Polyunsaturated fatty acids : evidence for non-substitutable biochemical resources in Daphnia galeata}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17587}, year = {2001}, abstract = {The factors that determine the efficiency of energy transfer in aquatic food webs have been investigated for many decades. The plant-animal interface is the most variable and least predictable of all levels in the food web. In order to study determinants of food quality in a large lake and to test the recently proposed central importance of the long-chained eicosapentaenoic acid (EPA) at the pelagic producer-grazer interface, we tested the importance of polyunsaturated fatty acids (PUFAs) at the pelagic producerconsumer interface by correlating sestonic food parameters with somatic growth rates of a clone of Daphnia galeata. Daphnia growth rates were obtained from standardized laboratory experiments spanning one season with Daphnia feeding on natural seston from Lake Constance, a large pre-alpine lake. Somatic growth rates were fitted to sestonic parameters by using a saturation function. A moderate amount of variation was explained when the model included the elemental parameters carbon (r2 = 0.6) and nitrogen (r2 = 0.71). A tighter fit was obtained when sestonic phosphorus was incorporated (r2 = 0.86). The nonlinear regression with EPA was relatively weak (r2 = 0.77), whereas the highest degree of variance was explained by three C18-PUFAs. The best (r2 = 0.95), and only significant, correlation of Daphnia's growth was found with the C18-PUFA α-linolenic acid (α-LA; C18:3n-3). This correlation was weakest in late August when C:P values increased to 300, suggesting that mineral and PUFA-limitation of Daphnia's growth changed seasonally. Sestonic phosphorus and some PUFAs showed not only tight correlations with growth, but also with sestonic α-LA content. We computed Monte Carlo simulations to test whether the observed effects of α-LA on growth could be accounted for by EPA, phosphorus, or one of the two C18-PUFAs, stearidonic acid (C18:4n-3) and linoleic acid (C18:2n-6). With >99 \% probability, the correlation of growth with α-LA could not be explained by any of these parameters. In order to test for EPA limitation of Daphnia's growth, in parallel with experiments on pure seston, growth was determined on seston supplemented with chemostat-grown, P-limited Stephanodiscus hantzschii, which is rich in EPA. Although supplementation increased the EPA content 80-800x, no significant changes in the nonlinear regression of the growth rates with α-LA were found, indicating that growth of Daphnia on pure seston was not EPA limited. This indicates that the two fatty acids, EPA and α-LA, were not mutually substitutable biochemical resources and points to different physiological functions of these two PUFAs. These results support the PUFA-limitation hypothesis for sestonic C:P < 300 but are contrary to the hypothesis of a general importance of EPA, since no evidence for EPA limitation was found. It is suggested that the resource ratios of EPA and α-LA rather than the absolute concentrations determine which of the two resources is limiting growth.}, language = {en} } @misc{WackervonElert2002, author = {Wacker, Alexander and von Elert, Eric}, title = {Strong influences of larval diet history on subsequent post-settlement growth in the freshwater mollusc Dreissena polymorpha}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17627}, year = {2002}, abstract = {Significant seasonal variation in size at settlement has been observed in newly settled larvae of Dreissena polymorpha in Lake Constance. Diet quality, which varies temporally and spatially in freshwater habitats, has been suggested as a significant factor influencing life history and development of freshwater invertebrates. Accordingly, experiments were conducted with field-collected larvae to test the hypothesis that diet quality can determine planktonic larval growth rates, size at settlement and subsequent post-metamorphic growth rates. Larvae were fed one of two diets or starved. One diet was composed of cyanobacterial cells which are deficient in polyunsaturated fatty acids (PUFAs), and the other was a mixed diet rich in PUFAs. Freshly metamorphosed animals from the starvation treatment had a carbon content per individual 70\% lower than that of larvae fed the mixed diet. This apparent exhaustion of larval internal reserves resulted in a 50\% reduction of the postmetamorphic growth rates. Growth was also reduced in animals previously fed the cyanobacterial diet. Hence, low food quantity or low food quality during the larval stage of D. polymorpha lead to irreversible effects for postmetamorphic animals, and is related to inferior competitive abilities.}, language = {en} } @article{PiephoArtsWacker2012, author = {Piepho, Maike and Arts, Michael T. and Wacker, Alexander}, title = {Species-specific variation in fatty acid concentrations of four phytoplankton species does phosphorus supply influence the effect of light intensity of temperature?}, series = {Journal of phycology}, volume = {48}, journal = {Journal of phycology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0022-3646}, doi = {10.1111/j.1529-8817.2011.01103.x}, pages = {64 -- 73}, year = {2012}, abstract = {We tested, in the laboratory, the influence of light intensity, temperature, and phosphorus (P) supply on fatty acid (FA) concentrations of four freshwater algae: the green algae Scenedesmus quadricauda (Turpin) Breb. and Chlamydomonas globosa J. Snow, the cryptophyte Cryptomonas ovata Ehrenb., and the diatom Cyclotella meneghiniana Kutz. We investigated the main and interactive effects of two variables on algal FA concentrations (i.e., light intensity and P supply or temperature and P supply). Interactive effects of light intensity and P supply were most pronounced in C. meneghiniana, but were also found in S. quadricauda and C. ovata. Changes in several saturated and unsaturated FA concentrations with light were more distinct in the low-P treatments than in the high-P treatments. Interactive effects of temperature and P supply on various FA concentrations were observed in all four species, but there was no consistent pattern. In lake ecosystems, P limitation often coincides with high light intensities and temperatures in summer. Therefore, it is important to examine how combinations of these environmental conditions affect FA concentrations of primary producers that are important sources of FAs for higher trophic levels.}, language = {en} } @article{WackerMarzetzSpijkerman2015, author = {Wacker, Alexander and Marzetz, Vanessa and Spijkerman, Elly}, title = {Interspecific competition in phytoplankton drives the availability of essential mineral and biochemical nutrients}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {9}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1915.1}, pages = {2467 -- 2477}, year = {2015}, abstract = {The underlying mechanisms and consequences of competition and diversity are central themes in ecology. A higher diversity of primary producers often results in higher resource use efficiency in aquatic and terrestrial ecosystems. This may result in more food for consumers on one hand, while, on the other hand, it can also result in a decreased food quality for consumers; higher biomass combined with the same availability of the limiting compound directly reduces the dietary proportion of the limiting compound. Here we tested whether and how interspecific competition in phytoplankton communities leads to changes in resource use efficiency and cellular concentrations of nutrients and fatty acids. The measured particulate carbon : phosphorus ratios (C:P) and fatty acid concentrations in the communities were compared to the theoretically expected ratios and concentrations of measurements on simultaneously running monocultures. With interspecific competition, phytoplankton communities had higher concentrations of the monounsaturated fatty acid oleic acid and also much higher concentrations of the ecologically and physiologically relevant long-chain polyunsaturated fatty acid eicosapentaenoic acid than expected concentrations based on monocultures. Such higher availability of essential fatty acids may contribute to the positive relationship between phytoplankton diversity and zooplankton growth, and may compensate limitations by mineral nutrients in higher trophic levels.}, language = {en} }