@article{MelnickCisternasMorenoetal.2012, author = {Melnick, Daniel and Cisternas, Marco and Moreno, Marcos and Norambuena, Ricardo}, title = {Estimating coseismic coastal uplift with an intertidal mussel calibration for the 2010 Maule Chile earthquake (M-w=8.8)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {42}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2012.03.012}, pages = {29 -- 42}, year = {2012}, abstract = {Coseismic coastal uplift has been quantified using sessile intertidal organisms after several great earthquakes following FitzRoy's pioneer measurements in 1835. A dense survey of such markers may complement space geodetic data to obtain an accurate distribution of fault slip and earthquake segmentation. However, uplift estimates based on diverse intertidal organisms tend to differ, because of few methodological and comparative studies. Here, we calibrate and estimate coastal uplift in the southern segment of the 2010 Maule, Chile earthquake (M-w = 8.8) using > 1100 post-earthquake elevation measurements of the sessile mussel Perumytilus purpuratus. This mussel is the predominant competitor for rocky shores all along the Pacific coast of South America, where it forms fringes or belts distinctively in the middle intertidal zone. These belts are centered at mean sea level and their width should equal one third of the tidal range. We measured belt widths close to this value at 40\% of the sites, but overall widths are highly variable due to the unevenness in belt tops; belt bases, in turn, are rather regular. Belt top unevenness apparently results from locally-enhanced wave splash, whereas belt base evenness is controlled by predation. According to our measurements made beyond the earthquake rupture, the belt base is at the bottom of the middle intertidal zone, and thus we propose to estimate coastal uplift using the belt base mean elevation plus one sixth of the tidal range to reach mean sea level. Within errors our estimates agree with GPS displacements but differ from other methods. Comparisons of joint inversions for megathrust slip suggest combining space geodetic data with estimates from intertidal organisms may locally increase the detail of slip distributions.}, language = {en} } @article{MelnickMorenoCisternasetal.2012, author = {Melnick, Daniel and Moreno, Marcos and Cisternas, Marco and Tassara, Andres}, title = {Darwin seismic gap closed by the 2010 Maule earthquake}, series = {Andean geology}, volume = {39}, journal = {Andean geology}, number = {3}, publisher = {Servicio Nacional de Geolog{\`i}a y Miner{\`i}a}, address = {Santiago}, issn = {0718-7092}, doi = {10.5027/andgeoV39n3-a11}, pages = {558 -- 563}, year = {2012}, abstract = {The Maule earthquake (Mw 8.8) that affected south-central Chile on February 27, 2010 was preceded by the 1835 event documented by FitzRoy and Darwin. The relation between both events has been controversial. Fault slip in 2010 estimated by Lorito et al. (2011) is less than expected from 175 years of strain accumulation, leading them to conclude only limited overlap between the 2010 and 1835 events, and that a Mw 7.5-8 event could still strike the Concepcion region. However, Lorito et al.'s model was based on displacements obtained from only 6 GPS stations and underpredicts observations from recent studies. Here we show that an alternative model based on 169 GPS displacements reproduces the data better, suggesting Lorito et al.'s main conclusion is not correct. Based on a slip deficit map, we suggest the seismic gap opened in 1835 was most likely closed in 2010.}, language = {en} }