@article{WernetLeitnerJosefssonetal.2017, author = {Wernet, Philippe and Leitner, T. and Josefsson, Ida and Mazza, T. and Miedema, P. S. and Schroder, H. and Beye, Martin and Kunnus, K. and Schreck, S. and Radcliffe, P. and Dusterer, S. and Meyer, M. and Odelius, Michael and Fohlisch, Alexander}, title = {Communication: Direct evidence for sequential dissociation of gas-phase Fe(CO)(5) via a singlet pathway upon excitation at 266 nm}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {146}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4984774}, pages = {5}, year = {2017}, abstract = {We prove the hitherto hypothesized sequential dissociation of Fe(CO)(5) in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)(4) within the temporal resolution of the experiment and further to Fe(CO)(3) within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)(5), Fe(CO)(4), and Fe(CO)(3) showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)(5) complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes. Published by AIP Publishing.}, language = {en} } @article{EckertNorellMiedemaetal.2017, author = {Eckert, Sebastian and Norell, Jesper and Miedema, Piter S. and Beye, Martin and Fondell, Mattis and Quevedo, Wilson and Kennedy, Brian and Hantschmann, Markus and Pietzsch, Annette and Van Kuiken, Benjamin E. and Ross, Matthew and Minitti, Michael P. and Moeller, Stefan P. and Schlotter, William F. and Khalil, Munira and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {56}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201700239}, pages = {6088 -- 6092}, year = {2017}, abstract = {The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort time-scale.}, language = {en} } @article{VazdaCruzErtanCoutoetal.2017, author = {Vaz da Cruz, Vinicius and Ertan, Emelie and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimaraes, Freddy F. and {\AA}gren, Hans and Odelius, Michael and F{\"o}hlisch, Alexander and Kimberg, Victor}, title = {A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp01215b}, pages = {19573 -- 19589}, year = {2017}, abstract = {In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.}, language = {en} } @article{CoutoCruzErtanetal.2017, author = {Couto, Rafael C. and Cruz, Vinicius V. and Ertan, Emelie and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimaraes, Freddy F. and Agren, Hans and Odelius, Michael and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Selective gating to vibrational modes through resonant X-ray scattering}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms14165}, pages = {7}, year = {2017}, abstract = {The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.}, language = {en} } @misc{CoutoCruzErtanetal.2017, author = {Couto, Rafael C. and Cruz, Vinicius V. and Ertan, Emelie and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimar{\~a}es, Freddy F. and {\AA}gren, Hans and Gel'mukhanov, Faris and Odelius, Michael and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Selective gating to vibrational modes through resonant X-ray scattering}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1124}, issn = {1866-8372}, doi = {10.25932/publishup-43692}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436926}, pages = {9}, year = {2017}, abstract = {The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.}, language = {en} } @misc{EckertNorellMiedemaetal.2017, author = {Eckert, Sebastian and Norell, Jesper and Miedema, Piter S. and Beye, Martin and Fondell, Mattis and Quevedo, Wilson and Kennedy, Brian and Hantschmann, Markus and Pietzsch, Annette and van Kuiken, Benjamin E. and Ross, Matthew and Minitti, Michael P. and Moeller, Stefan P. and Schlotter, William F. and Khalil, Munira and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1115}, issn = {1866-8372}, doi = {10.25932/publishup-43687}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436873}, pages = {7}, year = {2017}, abstract = {The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort time-scale.}, language = {en} }