@article{DolmatovaGoldobinPikovskij2017, author = {Dolmatova, Anastasiya V. and Goldobin, Denis S. and Pikovskij, Arkadij}, title = {Synchronization of coupled active rotators by common noise}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {96}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.96.062204}, pages = {E10648 -- E10657}, year = {2017}, abstract = {We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law.}, language = {en} }