@article{PostbergKempfSchmidtetal.2009, author = {Postberg, Frank and Kempf, Sascha and Schmidt, J{\"u}rgen and Brilliantov, Nikolai V. and Beinsen, Alexander and Abel, Bernd and Buck, Udo and Srama, Ralf}, title = {Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus}, issn = {0028-0836}, doi = {10.1038/Nature08046}, year = {2009}, abstract = {Saturn's moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole(1-5), suggesting the possibility of a subsurface ocean(5-7). These plume particles are the dominant source of Saturn's E ring(7,8). A previous in situ analysis(9) of these particles concluded that the minor organic or siliceous components, identified in many ice grains, could be evidence for interaction between Enceladus' rocky core and liquid water(9,10). It was not clear, however, whether the liquid is still present today or whether it has frozen. Here we report the identification of a population of E-ring grains that are rich in sodium salts (similar to 0.5- 2\% by mass), which can arise only if the plumes originate from liquid water. The abundance of various salt components in these particles, as well as the inferred basic pH, exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core(11). The plume vapour is expected to be free of atomic sodium. Thus, the absence of sodium from optical spectra(12) is in good agreement with our results. In the E ring the upper limit for spectroscopy(12) is insufficiently sensitive to detect the concentrations we found.}, language = {en} } @article{KempfSramaGruenetal.2012, author = {Kempf, Sascha and Srama, Ralf and Gr{\"u}n, Eberhard and Mocker, Anna and Postberg, Frank and Hillier, Jon K. and Horanyi, Mihaly and Sternovsky, Zoltan and Abel, Bernd and Beinsen, Alexander and Thissen, Roland and Schmidt, J{\"u}rgen and Spahn, Frank and Altobelli, Nicolas}, title = {Linear high resolution dust mass spectrometer for a mission to the Galilean satellites}, series = {Planetary and space science}, volume = {65}, journal = {Planetary and space science}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2011.12.019}, pages = {10 -- 20}, year = {2012}, abstract = {The discovery of volcanic activity on Enceladus stands out amongst the long list of findings by the Cassini mission to Saturn. In particular the compositional analysis of Enceladus ice particles by Cassini's Cosmic Dust Analyser (CDA) (Srama et al., 2004) has proven to be a powerful technique for obtaining information about processes below the moon's ice crust. Small amounts of sodium salts embedded in the particles' ice matrices provide direct evidence for a subsurface liquid water reservoir, which is, or has been, in contact with the moon's rocky core (Postberg et al., 2009, 2011b). Jupiter's Galilean satellites Ganymede, Europa, and Callisto are also believed to have subsurface oceans and are therefore prime targets for future NASA and ESA outer Solar System missions. The Galilean moons are engulfed in tenuous dust clouds consisting of tiny pieces of the moons' surfaces (Kruger et al., 1999), released by hypervelocity impacts of micrometeoroids, which steadily bombard the surfaces of the moons. In situ chemical analysis of these grains by a high resolution dust spectrometer will provide spatially resolved mapping of the surface composition of Europa. Ganymede, and Callisto, meeting key scientific objectives of the planned missions. However, novel high-resolution reflectron-type dust mass spectrometers (Sternovsky et al., 2007; Srama et al., 2007) developed for dust astronomy missions (Gran et al., 2009) are probably not robust enough to be operated in the energetic radiation environment of the inner Jovian system. In contrast, CDA's linear spectrometer is much less affected by harsh radiation conditions because its ion detector is not directly facing out into space. The instrument has been continuously operated on Cassini for 11 years. In this paper we investigate the possibility of operating a CDA-like instrument as a high resolution impact mass spectrometer. We show that such an instrument is capable of reliably identifying traces of organic and inorganic materials in the ice matrix of ejecta expected to be generated from the surfaces of the Galilean moons. These measurements are complementary, and in some cases superior, compared to other traditional techniques such as infrared remote sensing or in situ ion or neutral mass spectrometers.}, language = {en} }