@article{KempfSramaGruenetal.2012, author = {Kempf, Sascha and Srama, Ralf and Gr{\"u}n, Eberhard and Mocker, Anna and Postberg, Frank and Hillier, Jon K. and Horanyi, Mihaly and Sternovsky, Zoltan and Abel, Bernd and Beinsen, Alexander and Thissen, Roland and Schmidt, J{\"u}rgen and Spahn, Frank and Altobelli, Nicolas}, title = {Linear high resolution dust mass spectrometer for a mission to the Galilean satellites}, series = {Planetary and space science}, volume = {65}, journal = {Planetary and space science}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2011.12.019}, pages = {10 -- 20}, year = {2012}, abstract = {The discovery of volcanic activity on Enceladus stands out amongst the long list of findings by the Cassini mission to Saturn. In particular the compositional analysis of Enceladus ice particles by Cassini's Cosmic Dust Analyser (CDA) (Srama et al., 2004) has proven to be a powerful technique for obtaining information about processes below the moon's ice crust. Small amounts of sodium salts embedded in the particles' ice matrices provide direct evidence for a subsurface liquid water reservoir, which is, or has been, in contact with the moon's rocky core (Postberg et al., 2009, 2011b). Jupiter's Galilean satellites Ganymede, Europa, and Callisto are also believed to have subsurface oceans and are therefore prime targets for future NASA and ESA outer Solar System missions. The Galilean moons are engulfed in tenuous dust clouds consisting of tiny pieces of the moons' surfaces (Kruger et al., 1999), released by hypervelocity impacts of micrometeoroids, which steadily bombard the surfaces of the moons. In situ chemical analysis of these grains by a high resolution dust spectrometer will provide spatially resolved mapping of the surface composition of Europa. Ganymede, and Callisto, meeting key scientific objectives of the planned missions. However, novel high-resolution reflectron-type dust mass spectrometers (Sternovsky et al., 2007; Srama et al., 2007) developed for dust astronomy missions (Gran et al., 2009) are probably not robust enough to be operated in the energetic radiation environment of the inner Jovian system. In contrast, CDA's linear spectrometer is much less affected by harsh radiation conditions because its ion detector is not directly facing out into space. The instrument has been continuously operated on Cassini for 11 years. In this paper we investigate the possibility of operating a CDA-like instrument as a high resolution impact mass spectrometer. We show that such an instrument is capable of reliably identifying traces of organic and inorganic materials in the ice matrix of ejecta expected to be generated from the surfaces of the Galilean moons. These measurements are complementary, and in some cases superior, compared to other traditional techniques such as infrared remote sensing or in situ ion or neutral mass spectrometers.}, language = {en} } @article{HsuSchmidtKempfetal.2018, author = {Hsu, Hsiang-Wen and Schmidt, J{\"u}rgen and Kempf, Sascha and Postberg, Frank and Moragas-Klostermeyer, Georg and Seiss, Martin and Hoffmann, Holger and Burton, Marcia and Ye, ShengYi and Kurth, William S. and Horanyi, Mihaly and Khawaja, Nozair and Spahn, Frank and Schirdewahn, Daniel and Moore, Luke and Cuzzi, Jeff and Jones, Geraint H. and Srama, Ralf}, title = {In situ collection of dust grains falling from Saturn's rings into its atmosphere}, series = {Science}, volume = {362}, journal = {Science}, number = {6410}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat3185}, pages = {49 -- +}, year = {2018}, abstract = {Saturn's main rings are composed of >95\% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft's traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn's dense rings by the CDA impact mass spectrometer. Most detected grains are a few tens of nanometers in size and dynamically associated with the previously inferred "ring rain." Silicate and water-ice grains were identified, in proportions that vary with latitude. Silicate grains constitute up to 30\% of infalling grains, a higher percentage than the bulk silicate content of the rings.}, language = {en} } @misc{SpahnSachseSeissetal.2019, author = {Spahn, Frank and Sachse, Manuel and Seiss, Martin and Hsu, Hsiang-Wen and Kempf, Sascha and Horanyi, Mihaly}, title = {Circumplanetary Dust Populations}, series = {Space science reviews}, volume = {215}, journal = {Space science reviews}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-018-0577-3}, pages = {54}, year = {2019}, abstract = {We summarize the current state of observations of circumplanetary dust populations, including both dilute and dense rings and tori around the giant planets, ejecta clouds engulfing airless moons, and rings around smaller planetary bodies throughout the Solar System. We also discuss the theoretical models that enable these observations to be understood in terms of the sources, sinks and transport of various dust populations. The dynamics and resulting transport of the particles can be quite complex, due to the fact that their motion is influenced by neutral and plasma drag, radiation pressure, and electromagnetic forcesall in addition to gravity. The relative importance of these forces depends on the environment, as well as the makeup and size of the particles. Possible dust sources include the generation of ejecta particles by impacts, active volcanoes and geysers, and the capture of exogenous particles. Possible dust sinks include collisions with moons, rings, or the central planet, erosion due to sublimation and sputtering, even ejection and escape from the circumplanetary environment.}, language = {en} }