@article{RisseHohensteinKliegletal.2014, author = {Risse, Sarah and Hohenstein, Sven and Kliegl, Reinhold and Engbert, Ralf}, title = {A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm}, series = {Visual cognition}, volume = {22}, journal = {Visual cognition}, number = {3-4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1350-6285}, doi = {10.1080/13506285.2014.881444}, pages = {283 -- 308}, year = {2014}, abstract = {Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words.}, language = {en} } @article{SorensenHohensteinVasishth2016, author = {Sorensen, Tanner and Hohenstein, Sven and Vasishth, Shravan}, title = {Bayesian linear mixed models using Stan: A tutorial for psychologists, linguists, and cognitive scientists}, series = {Tutorials in Quantitative Methods for Psychology}, volume = {12}, journal = {Tutorials in Quantitative Methods for Psychology}, publisher = {University of Montreal, Department of Psychology}, address = {Montreal}, issn = {2292-1354}, doi = {10.20982/tqmp.12.3.p175}, pages = {175 -- 200}, year = {2016}, abstract = {With the arrival of the R packages nlme and lme4, linear mixed models (LMMs) have come to be widely used in experimentally-driven areas like psychology, linguistics, and cognitive science. This tutorial provides a practical introduction to fitting LMMs in a Bayesian framework using the probabilistic programming language Stan. We choose Stan (rather than WinBUGS or JAGS) because it provides an elegant and scalable framework for fitting models in most of the standard applications of LMMs. We ease the reader into fitting increasingly complex LMMs, using a two-condition repeated measures self-paced reading study.}, language = {en} } @phdthesis{Hohenstein2013, author = {Hohenstein, Sven}, title = {Eye movements and processing of semantic information in the parafovea during reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70363}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {When we read a text, we obtain information at different levels of representation from abstract symbols. A reader's ultimate aim is the extraction of the meaning of the words and the text. The reserach of eye movements in reading covers a broad range of psychological systems, ranging from low-level perceptual and motor processes to high-level cognition. Reading of skilled readers proceeds highly automatic, but is a complex phenomenon of interacting subprocesses at the same time. The study of eye movements during reading offers the possibility to investigate cognition via behavioral measures during the excercise of an everyday task. The process of reading is not limited to the directly fixated (or foveal) word but also extends to surrounding (or parafoveal) words, particularly the word to the right of the gaze position. This process may be unconscious, but parafoveal information is necessary for efficient reading. There is an ongoing debate on whether processing of the upcoming word encompasses word meaning (or semantics) or only superficial features. To increase the knowledge about how the meaning of one word helps processing another word, seven experiments were conducted. In these studies, words were exachanged during reading. The degree of relatedness between the word to the right of the currently fixated one and the word subsequently fixated was experimentally manipulated. Furthermore, the time course of the parafoveal extraction of meaning was investigated with two different approaches, an experimental one and a statistical one. As a major finding, fixation times were consistently lower if a semantically related word was presented compared to the presence of an unrelated word. Introducing an experimental technique that allows controlling the duration for which words are available, the time course of processing and integrating meaning was evaluated. Results indicated both facilitation and inhibition due to relatedness between the meanings of words. In a more natural reading situation, the effectiveness of the processing of parafoveal words was sometimes time-dependent and substantially increased with shorter distances between the gaze position and the word. Findings are discussed with respect to theories of eye-movement control. In summary, the results are more compatible with models of distributed word processing. The discussions moreover extend to language differences and technical issues of reading research.}, language = {en} } @article{KlieglHohensteinYanetal.2013, author = {Kliegl, Reinhold and Hohenstein, Sven and Yan, Ming and McDonald, Scott A.}, title = {How preview space/time translates into preview cost/benefit for fixation durations during reading}, series = {The quarterly journal of experimental psychology}, volume = {66}, journal = {The quarterly journal of experimental psychology}, number = {3}, publisher = {Wiley}, address = {Hove}, issn = {1747-0218}, doi = {10.1080/17470218.2012.658073}, pages = {581 -- 600}, year = {2013}, abstract = {Eye-movement control during reading depends on foveal and parafoveal information. If the parafoveal preview of the next word is suppressed, reading is less efficient. A linear mixed model (LMM) reanalysis of McDonald (2006) confirmed his observation that preview benefit may be limited to parafoveal words that have been selected as the saccade target. Going beyond the original analyses, in the same LMM, we examined how the preview effect (i.e., the difference in single-fixation duration, SFD, between random-letter and identical preview) depends on the gaze duration on the pretarget word and on the amplitude of the saccade moving the eye onto the target word. There were two key results: (a) The shorter the saccade amplitude (i.e., the larger preview space), the shorter a subsequent SFD with an identical preview; this association was not observed with a random-letter preview. (b) However, the longer the gaze duration on the pretarget word, the longer the subsequent SFD on the target, with the difference between random-letter string and identical previews increasing with preview time. A third patternincreasing cost of a random-letter string in the parafovea associated with shorter saccade amplitudeswas observed for target gaze durations. Thus, LMMs revealed that preview effects, which are typically summarized under preview benefit, are a complex mixture of preview cost and preview benefit and vary with preview space and preview time. The consequence for reading is that parafoveal preview may not only facilitate, but also interfere with lexical access.}, language = {en} } @article{SchadVasishthHohensteinetal.2020, author = {Schad, Daniel and Vasishth, Shravan and Hohenstein, Sven and Kliegl, Reinhold}, title = {How to capitalize on a priori contrasts in linear (mixed) models}, series = {Journal of memory and language}, volume = {110}, journal = {Journal of memory and language}, publisher = {Elsevier}, address = {San Diego}, issn = {0749-596X}, doi = {10.1016/j.jml.2019.104038}, pages = {40}, year = {2020}, abstract = {Factorial experiments in research on memory, language, and in other areas are often analyzed using analysis of variance (ANOVA). However, for effects with more than one numerator degrees of freedom, e.g., for experimental factors with more than two levels, the ANOVA omnibus F-test is not informative about the source of a main effect or interaction. Because researchers typically have specific hypotheses about which condition means differ from each other, a priori contrasts (i.e., comparisons planned before the sample means are known) between specific conditions or combinations of conditions are the appropriate way to represent such hypotheses in the statistical model. Many researchers have pointed out that contrasts should be "tested instead of, rather than as a supplement to, the ordinary 'omnibus' F test" (Hays, 1973, p. 601). In this tutorial, we explain the mathematics underlying different kinds of contrasts (i.e., treatment, sum, repeated, polynomial, custom, nested, interaction contrasts), discuss their properties, and demonstrate how they are applied in the R System for Statistical Computing (R Core Team, 2018). In this context, we explain the generalized inverse which is needed to compute the coefficients for contrasts that test hypotheses that are not covered by the default set of contrasts. A detailed understanding of contrast coding is crucial for successful and correct specification in linear models (including linear mixed models). Contrasts defined a priori yield far more useful confirmatory tests of experimental hypotheses than standard omnibus F-tests. Reproducible code is available from https://osf.io/7ukf6/.}, language = {en} } @misc{HohensteinMatuschekKliegl2016, author = {Hohenstein, Sven and Matuschek, Hannes and Kliegl, Reinhold}, title = {Linked linear mixed models}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {552}, issn = {1866-8364}, doi = {10.25932/publishup-42828}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428281}, pages = {15}, year = {2016}, abstract = {The complexity of eye-movement control during reading allows measurement of many dependent variables, the most prominent ones being fixation durations and their locations in words. In current practice, either variable may serve as dependent variable or covariate for the other in linear mixed models (LMMs) featuring also psycholinguistic covariates of word recognition and sentence comprehension. Rather than analyzing fixation location and duration with separate LMMs, we propose linking the two according to their sequential dependency. Specifically, we include predicted fixation location (estimated in the first LMM from psycholinguistic covariates) and its associated residual fixation location as covariates in the second, fixation-duration LMM. This linked LMM affords a distinction between direct and indirect effects (mediated through fixation location) of psycholinguistic covariates on fixation durations. Results confirm the robustness of distributed processing in the perceptual span. They also offer a resolution of the paradox of the inverted optimal viewing position (IOVP) effect (i.e., longer fixation durations in the center than at the beginning and end of words) although the opposite (i.e., an OVP effect) is predicted from default assumptions of psycholinguistic processing efficiency: The IOVP effect in fixation durations is due to the residual fixation-location covariate, presumably driven primarily by saccadic error, and the OVP effect (at least the left part of it) is uncovered with the predicted fixation-location covariate, capturing the indirect effects of psycholinguistic covariates. We expect that linked LMMs will be useful for the analysis of other dynamically related multiple outcomes, a conundrum of most psychonomic research.}, language = {en} } @misc{HohensteinMatuschekKliegl2017, author = {Hohenstein, Sven and Matuschek, Hannes and Kliegl, Reinhold}, title = {Linked linear mixed models: A joint analysis of fixation locations and fixation durations in natural reading}, series = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, volume = {24}, journal = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-016-1138-y}, pages = {637 -- 651}, year = {2017}, abstract = {The complexity of eye-movement control during reading allows measurement of many dependent variables, the most prominent ones being fixation durations and their locations in words. In current practice, either variable may serve as dependent variable or covariate for the other in linear mixed models (LMMs) featuring also psycholinguistic covariates of word recognition and sentence comprehension. Rather than analyzing fixation location and duration with separate LMMs, we propose linking the two according to their sequential dependency. Specifically, we include predicted fixation location (estimated in the first LMM from psycholinguistic covariates) and its associated residual fixation location as covariates in the second, fixation-duration LMM. This linked LMM affords a distinction between direct and indirect effects (mediated through fixation location) of psycholinguistic covariates on fixation durations. Results confirm the robustness of distributed processing in the perceptual span. They also offer a resolution of the paradox of the inverted optimal viewing position (IOVP) effect (i.e., longer fixation durations in the center than at the beginning and end of words) although the opposite (i.e., an OVP effect) is predicted from default assumptions of psycholinguistic processing efficiency: The IOVP effect in fixation durations is due to the residual fixation-location covariate, presumably driven primarily by saccadic error, and the OVP effect (at least the left part of it) is uncovered with the predicted fixation-location covariate, capturing the indirect effects of psycholinguistic covariates. We expect that linked LMMs will be useful for the analysis of other dynamically related multiple outcomes, a conundrum of most psychonomic research.}, language = {en} } @unpublished{LaubrockHohenstein2012, author = {Laubrock, Jochen and Hohenstein, Sven}, title = {Orthographic consistency and parafoveal preview benefit: A resource-sharing account of language differences in processing of phonological and semantic codes}, series = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, volume = {35}, journal = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, number = {5}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0140-525X}, doi = {10.1017/S0140525X12000209}, pages = {292 -- 293}, year = {2012}, abstract = {Parafoveal preview benefit (PB) is an implicit measure of lexical activation in reading. PB has been demonstrated for orthographic and phonological but not for semantically related information in English. In contrast, semantic PB is obtained in German and Chinese. We propose that these language differences reveal differential resource demands and timing of phonological and semantic decoding in different orthographic systems.}, language = {en} } @article{HohensteinKliegl2014, author = {Hohenstein, Sven and Kliegl, Reinhold}, title = {Semantic preview benefit during reading}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {40}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {1}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0033670}, pages = {166 -- 190}, year = {2014}, abstract = {Word features in parafoveal vision influence eye movements during reading. The question of whether readers extract semantic information from parafoveal words was studied in 3 experiments by using a gaze-contingent display change technique. Subjects read German sentences containing 1 of several preview words that were replaced by a target word during the saccade to the preview (boundary paradigm). In the 1st experiment the preview word was semantically related or unrelated to the target. Fixation durations on the target were shorter for semantically related than unrelated previews, consistent with a semantic preview benefit. In the 2nd experiment, half the sentences were presented following the rules of German spelling (i.e., previews and targets were printed with an initial capital letter), and the other half were presented completely in lowercase. A semantic preview benefit was obtained under both conditions. In the 3rd experiment, we introduced 2 further preview conditions, an identical word and a pronounceable nonword, while also manipulating the text contrast. Whereas the contrast had negligible effects, fixation durations on the target were reliably different for all 4 types of preview. Semantic preview benefits were greater for pretarget fixations closer to the boundary (large preview space) and, although not as consistently, for long pretarget fixation durations (long preview time). The results constrain theoretical proposals about eye movement control in reading.}, language = {en} } @article{HohensteinKliegl2010, author = {Hohenstein, Sven and Kliegl, Reinhold}, title = {Semantic preview benefit in eye movements during reading : a parafoveal fast-priming study}, issn = {0278-7393}, doi = {10.1037/A0020233}, year = {2010}, abstract = {Eye movements in reading are sensitive to foveal and parafoveal word features. Whereas the influence of orthographic or phonological parafoveal information on gaze control is undisputed, there has been no reliable evidence for early parafoveal extraction of semantic information in alphabetic script. Using a novel combination of the gaze- contingent fast-priming and boundary paradigms, we demonstrate semantic preview benefit when a semantically related parafoveal word was available during the initial 125 ms of a fixation on the pretarget word (Experiments 1 and 2). When the target location was made more salient, significant parafoveal semantic priming occurred only at 80 ms (Experiment 3). Finally, with short primes only (20, 40, 60 ms), effects were not significant but were numerically in the expected direction for 40 and 60 ms (Experiment 4). In all experiments, fixation durations on the target word increased with prime durations under all conditions. The evidence for extraction of semantic information from the parafoveal word favors an explanation in terms of parallel word processing in reading.}, language = {en} } @misc{HohensteinLaubrockKliegl2010, author = {Hohenstein, Sven and Laubrock, Jochen and Kliegl, Reinhold}, title = {Semantic preview benefit in eye movements during reading: a parafoveal past-priming study}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57203}, year = {2010}, abstract = {Eye movements in reading are sensitive to foveal and parafoveal word features. Whereas the influence of orthographic or phonological parafoveal information on gaze control is undisputed, there has been no reliable evidence for early parafoveal extraction of semantic information in alphabetic script. Using a novel combination of the gaze-contingent fast-priming and boundary paradigms, we demonstrate semantic preview benefit when a semantically related parafoveal word was available during the initial 125 ms of a fixation on the pre-target word (Experiments 1 and 2). When the target location was made more salient, significant parafoveal semantic priming occurred only at 80 ms (Experiment 3). Finally, with short primes only (20, 40, 60 ms) effects were not significant but numerically in the expected direction for 40 and 60 ms (Experiment 4). In all experiments, fixation durations on the target word increased with prime durations under all conditions. The evidence for extraction of semantic information from the parafoveal word favors an explanation in terms of parallel word processing in reading.}, language = {en} }