@article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Metacommunity, mainland-island system or island communities? : assessing the regional dynamics of plant communities in a fragmented landscape}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {36}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2012.07793.x}, pages = {842 -- 853}, year = {2013}, abstract = {Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among-patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape-scale. In this study, we used extensive field data from a fragmented, semi-arid landscape in Israel to parameterize a multi-species incidence-function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics - the metacommunity, the mainland-island, or the island communities type - best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch-matrix study landscape is best represented as a system of highly isolated island' communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33-60\% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.}, language = {en} } @article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Plant functional traits and community assembly along interacting gradients of productivity and fragmentation}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {15}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2013.08.002}, pages = {304 -- 318}, year = {2013}, abstract = {Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes. In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south-north productivity gradient. We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m x 0.25 m). All traits varied significantly along the S-N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S-N gradient. Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass). Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.}, language = {en} } @phdthesis{May2013, author = {May, Felix}, title = {Spatial models of plant diversity and plant functional traits : towards a better understanding of plant community dynamics in fragmented landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68444}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The fragmentation of natural habitat caused by anthropogenic land use changes is one of the main drivers of the current rapid loss of biodiversity. In face of this threat, ecological research needs to provide predictions of communities' responses to fragmentation as a prerequisite for the effective mitigation of further biodiversity loss. However, predictions of communities' responses to fragmentation require a thorough understanding of ecological processes, such as species dispersal and persistence. Therefore, this thesis seeks an improved understanding of community dynamics in fragmented landscapes. In order to approach this overall aim, I identified key questions on the response of plant diversity and plant functional traits to variations in species' dispersal capability, habitat fragmentation and local environmental conditions. All questions were addressed using spatially explicit simulations or statistical models. In chapter 2, I addressed scale-dependent relationships between dispersal capability and species diversity using a grid-based neutral model. I found that the ratio of survey area to landscape size is an important determinant of scale-dependent dispersal-diversity relationships. With small ratios, the model predicted increasing dispersal-diversity relationships, while decreasing dispersal-diversity relationships emerged, when the ratio approached one, i.e. when the survey area approached the landscape size. For intermediate ratios, I found a U-shaped pattern that has not been reported before. With this study, I unified and extended previous work on dispersal-diversity relationships. In chapter 3, I assessed the type of regional plant community dynamics for the study area in the Southern Judean Lowlands (SJL). For this purpose, I parameterised a multi-species incidence-function model (IFM) with vegetation data using approximate Bayesian computation (ABC). I found that the type of regional plant community dynamics in the SJL is best characterized as a set of isolated "island communities" with very low connectivity between local communities. Model predictions indicated a significant extinction debt with 33\% - 60\% of all species going extinct within 1000 years. In general, this study introduces a novel approach for combining a spatially explicit simulation model with field data from species-rich communities. In chapter 4, I first analysed, if plant functional traits in the SJL indicate trait convergence by habitat filtering and trait divergence by interspecific competition, as predicted by community assembly theory. Second, I assessed the interactive effects of fragmentation and the south-north precipitation gradient in the SJL on community-mean plant traits. I found clear evidence for trait convergence, but the evidence for trait divergence fundamentally depended on the chosen null-model. All community-mean traits were significantly associated with the precipitation gradient in the SJL. The trait associations with fragmentation indices (patch size and connectivity) were generally weaker, but statistically significant for all traits. Specific leaf area (SLA) and plant height were consistently associated with fragmentation indices along the precipitation gradient. In contrast, seed mass and seed number were interactively influenced by fragmentation and precipitation. In general, this study provides the first analysis of the interactive effects of climate and fragmentation on plant functional traits. Overall, I conclude that the spatially explicit perspective adopted in this thesis is crucial for a thorough understanding of plant community dynamics in fragmented landscapes. The finding of contrasting responses of local diversity to variations in dispersal capability stresses the importance of considering the diversity and composition of the metacommunity, prior to implementing conservation measures that aim at increased habitat connectivity. The model predictions derived with the IFM highlight the importance of additional natural habitat for the mitigation of future species extinctions. In general, the approach of combining a spatially explicit IFM with extensive species occupancy data provides a novel and promising tool to assess the consequences of different management scenarios. The analysis of plant functional traits in the SJL points to important knowledge gaps in community assembly theory with respect to the simultaneous consequences of habitat filtering and competition. In particular, it demonstrates the importance of investigating the synergistic consequences of fragmentation, climate change and land use change on plant communities. I suggest that the integration of plant functional traits and of species interactions into spatially explicit, dynamic simulation models offers a promising approach, which will further improve our understanding of plant communities and our ability to predict their dynamics in fragmented and changing landscapes.}, language = {en} } @article{JeltschBlaumBroseetal.2013, author = {Jeltsch, Florian and Blaum, Niels and Brose, Ulrich and Chipperfield, Joseph D. and Clough, Yann and Farwig, Nina and Geissler, Katja and Graham, Catherine H. and Grimm, Volker and Hickler, Thomas and Huth, Andreas and May, Felix and Meyer, Katrin M. and Pagel, J{\"o}rn and Reineking, Bj{\"o}rn and Rillig, Matthias C. and Shea, Katriona and Schurr, Frank Martin and Schroeder, Boris and Tielb{\"o}rger, Katja and Weiss, Lina and Wiegand, Kerstin and Wiegand, Thorsten and Wirth, Christian and Zurell, Damaris}, title = {How can we bring together empiricists and modellers in functional biodiversity research?}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.01.001}, pages = {93 -- 101}, year = {2013}, abstract = {Improving our understanding of biodiversity and ecosystem functioning and our capacity to inform ecosystem management requires an integrated framework for functional biodiversity research (FBR). However, adequate integration among empirical approaches (monitoring and experimental) and modelling has rarely been achieved in FBR. We offer an appraisal of the issues involved and chart a course towards enhanced integration. A major element of this path is the joint orientation towards the continuous refinement of a theoretical framework for FBR that links theory testing and generalization with applied research oriented towards the conservation of biodiversity and ecosystem functioning. We further emphasize existing decision-making frameworks as suitable instruments to practically merge these different aims of FBR and bring them into application. This integrated framework requires joint research planning, and should improve communication and stimulate collaboration between modellers and empiricists, thereby overcoming existing reservations and prejudices. The implementation of this integrative research agenda for FBR requires an adaptation in most national and international funding schemes in order to accommodate such joint teams and their more complex structures and data needs.}, language = {en} }