@article{GodecSmithMerzel2013, author = {Godec, Aljaz and Smith, Jeremy C. and Merzel, Franci}, title = {Soft Collective Fluctuations Governing Hydrophobic Association}, series = {PHYSICAL REVIEW LETTERS}, volume = {111}, journal = {PHYSICAL REVIEW LETTERS}, number = {12}, publisher = {AMER PHYSICAL SOC}, address = {COLLEGE PK}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.111.127801}, pages = {5}, year = {2013}, abstract = {The interaction between two associating hydrophobic particles has traditionally been explained in terms of the release of entropically frustrated hydration shell water molecules. However, this picture cannot account for the kinetics of hydrophobic association and is therefore not capable of providing a microscopic description of the hydrophobic interaction (HI). Here, Monte Carlo simulations of a pair of molecular-scale apolar solutes in aqueous solution reveal the critical role of collective fluctuations in the hydrogen bond (HB) network for the microscopic picture of the HI. The main contribution to the HI is the relaxation of solute-water translational correlations. The existence of a heat capacity maximum at the desolvation barrier is shown to arise from softening of non-HB water fluctuations and the relaxation of many-body correlations in the labile HB network. The microscopic event governing the kinetics of hydrophobic association has turned out to be a relatively large critical collective fluctuation in hydration water displacing a substantial fraction of HB clusters from the inner to the outer region of the first hydration shell.}, language = {en} } @article{GodecMetzler2013, author = {Godec, Aljaz and Metzler, Ralf}, title = {Finite-Time effects and ultraweak ergodicity breaking in superdiffusive dynamics}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.020603}, pages = {5}, year = {2013}, abstract = {We study the ergodic properties of superdiffusive, spatiotemporally coupled Levy walk processes. For trajectories of finite duration, we reveal a distinct scatter of the scaling exponents of the time averaged mean squared displacement (delta x(2)) over bar around the ensemble value 3 - alpha (1 < alpha < 2) ranging from ballistic motion to subdiffusion, in strong contrast to the behavior of subdiffusive processes. In addition we find a significant dependence of the average of (delta x(2)) over bar over an ensemble of trajectories as a function of the finite measurement time. This so-called finite-time amplitude depression and the scatter of the scaling exponent is vital in the quantitative evaluation of superdiffusive processes. Comparing the long time average of the second moment with the ensemble mean squared displacement, these only differ by a constant factor, an ultraweak ergodicity breaking.}, language = {en} }