@article{RojasKoetzKosmellaetal.2009, author = {Rojas, Oscar and Koetz, Joachim and Kosmella, Sabine and Tiersch, Brigitte and Wacker, Philipp and Kramer, Markus}, title = {Structural studies of ionic liquid-modified microemulsions}, issn = {0021-9797}, doi = {10.1016/j.jcis.2009.02.039}, year = {2009}, abstract = {This work is focused on the influence of an ionic liquid (IL), i.e. ethyl-methylimidazolium hexylsulfate, on the spontaneous formation of microemulsions with ionic surfactants. The influence of the ionic liquid on Structure formation in the optically clear phase region in water/toluene/pentanol mixtures in presence of the cationic surfactant CTAB was studied in more detail. The results show a significant increase of the transparent phase region by adding the ionic liquid. Conductometric investigations demonstrate that adding the ionic liquid can drastically reduce the droplet- droplet interactions in the L-2 phase. H-1 nuclear magnetic resonance (H-1 NMR) diffusion coefficient measurements in combination with dynamic light scattering measurements clearly show that inverse microemulsion droplets still exist, but the droplet size is decreased to 2 nm. A more detailed characterisation of the isotropic phase channel by means of conductivity measurements, dynamic light scattering (DLS), H-1 NMR and cryo-scanning electron microscopy (SEM), allows the identification of a bicontinuous sponge phase between the L-1 and L-2 phase. When the poly(ethyleneimine) is added, the isotropic phase range is reduced drastically, but the inverse microemulsion range still exists.}, language = {en} } @article{KramerKleinpeter2013, author = {Kramer, Markus and Kleinpeter, Erich}, title = {A conformational study of N-acetyl glucosamine derivatives utilizing residual dipolar couplings}, issn = {1090-7807}, year = {2013}, language = {en} } @article{KramerKleinpeter2010, author = {Kramer, Markus and Kleinpeter, Erich}, title = {STD-DOSY : a new NMR method to analyze multi-component enzyme/substrate systems}, issn = {1090-7807}, doi = {10.1016/j.jmr.2009.11.007}, year = {2010}, abstract = {A new approach to analyze multi-component Saturation Transfer Difference (STD) NMR spectra by combining the STD and the DOSY experiment is proposed. The resulting pulse sequence was successfully used to simplify an exemplary multi- component protein/substrate system by means of standard DOSY processing methods. Furthermore, the same experiment could be applied to calculate the ratio of saturated substrate molecules and its saturation rate in the case of competitive interactions. This ratio depends on the strength of this interaction between the substrates and the protein, so that this kind of information could be extracted from the results of our experiment.}, language = {en} } @article{KramerKleinpeter2011, author = {Kramer, Markus and Kleinpeter, Erich}, title = {A conformational study of N-acetyl glucosamine derivatives utilizing residual dipolar couplings}, series = {Journal of magnetic resonance}, volume = {212}, journal = {Journal of magnetic resonance}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {1090-7807}, doi = {10.1016/j.jmr.2011.06.029}, pages = {174 -- 185}, year = {2011}, abstract = {The conformational analyses of six non-rigid N-acetyl glucosamine (NAG) derivatives employing residual dipolar couplings (RDCs) and NOEs together with molecular dynamics (MD) simulations are presented. Due to internal dynamics we had to consider different conformer ratios existing in solution. The good quality of the correlation between theoretically and experimentally obtained RDCs show the correctness of the calculated conformers even if the ratios derived from the MD simulations do not exactly meet the experimental data. If possible, the results were compared to former published data and commented.}, language = {en} } @article{KlikaKramerKleinpeter2009, author = {Klika, Karel D. and Kramer, Markus and Kleinpeter, Erich}, title = {DFT computational studies of hydrogen bonding-based diastereomeric complexes : limitations and applications to enantiodifferentiation}, issn = {0166-1280}, doi = {10.1016/j.theochem.2009.08.003}, year = {2009}, abstract = {Molecular modeling calculations using DFT at the B3LYP/6-31G(d,p) level of theory have been performed on diastereomeric complexes formed between chiral carboxylate anions and chiral urea receptors, a combination previously demonstrated to enable enantiodifferentiation by electrochemical sensing. The calculations correctly predicted the stability order of the enantiomers in acetonitrile solution when the distinction between the enantiomers was above the declared threshold reliability value of 1 kcal mol;1 for computations at this level of theory. Thus, the calculations can not only be applied to predict the likely success of undertakings using the analytical method, it can also, provided ;E is sufficient, potentially be used to determine the absolute configuration of chiral analytes with at least the racemate in hand. The previously successful enantiodifferentiations of various amino acids and alcohols using chiral ion mobility spectroscopy (CIMS) with (S)-2-butanol as the chiral selector were also evaluated by DFT calculations. The calculations again correctly predicted the stability order of the enantiomers when the calculated ;E was above the threshold value though cases not providing a value for ;E above the threshold value was problematic for this system. Attempts to address this shortcoming included an expanded conformational evaluation, a broader analytical approach, and an extended basis set.}, language = {en} } @article{FettkeKramerKleinpeter2010, author = {Fettke, Anja and Kramer, Markus and Kleinpeter, Erich}, title = {Lectin-bound conformations and non-covalent interactions of glycomimetic analogs of thiochitobiose}, issn = {0040-4020}, doi = {10.1016/j.tet.2010.04.012}, year = {2010}, abstract = {The bound conformations of five S-glycoside analogs of N,N'-diacetylchitobiose as well as their non- covalent interactions with two lectins, Phytolacca americana lectin (PAL) and wheat germ agglutinin (WGA), are reported. The conformations of the ligands were examined by trNOESY experiments and compared with the free, solution-state conformations and molecular modeling data obtained by force field calculations. In the case of S-aryl, S-glycosides with exclusively S-glycosidic linkages, similar free and lectin-bound conformations and non-covalent interactions were found, whereas they differed for mixed glycosides and for a thiazoline derivative. In addition, STD (saturation transfer difference) NMR magnetization transfer efficiencies at three different temperatures were determined and assessed with respect to the structural differences of these pseudosaccharides. The binding epitopes of each substrate with PAL and WGA were also determined.}, language = {en} } @article{FechnerKramerKleinpeteretal.2009, author = {Fechner, Mabya and Kramer, Markus and Kleinpeter, Erich and Koetz, Joachim}, title = {Polyampholyte-modified ionic microemulsions}, issn = {0303-402X}, doi = {10.1007/s00396-009-2074-4}, year = {2009}, abstract = {This paper is focused on the influence of added polyampholyte, namely poly(N,N;-diallyl-N,N;- dimethyl-alt-maleamic carboxylate) on the inverse micellar phase range of the pseudo-ternary system consisting of toluene-pentanol (1:1)/SDS/water in dependence on the pH value and the temperature. Investigations on phase behavior have revealed that a greater extension in direction to the water-rich corner can be found at pH 4 compared to pH 9. In order to understand changes in the microstructure, polymer-surfactant interactions in dependence on pH have been examined by means of diffusion-ordered spectroscopy, differential scanning calorimetry, as well as conductivity measurements. The results have proven that the present microemulsion consists of water-in-oil droplets, with the polyampholyte located more in the inner core of the water droplets at pH 9 rather than at the interphase of the surfactant film at pH 4.}, language = {en} }