@article{LarhlimiBaslerGrimbsetal.2012, author = {Larhlimi, Abdelhalim and Basler, Georg and Grimbs, Sergio and Selbig, Joachim and Nikoloski, Zoran}, title = {Stoichiometric capacitance reveals the theoretical capabilities of metabolic networks}, series = {Bioinformatics}, volume = {28}, journal = {Bioinformatics}, number = {18}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/bts381}, pages = {I502 -- I508}, year = {2012}, abstract = {Motivation: Metabolic engineering aims at modulating the capabilities of metabolic networks by changing the activity of biochemical reactions. The existing constraint-based approaches for metabolic engineering have proven useful, but are limited only to reactions catalogued in various pathway databases. Results: We consider the alternative of designing synthetic strategies which can be used not only to characterize the maximum theoretically possible product yield but also to engineer networks with optimal conversion capability by using a suitable biochemically feasible reaction called 'stoichiometric capacitance'. In addition, we provide a theoretical solution for decomposing a given stoichiometric capacitance over a set of known enzymatic reactions. We determine the stoichiometric capacitance for genome-scale metabolic networks of 10 organisms from different kingdoms of life and examine its implications for the alterations in flux variability patterns. Our empirical findings suggest that the theoretical capacity of metabolic networks comes at a cost of dramatic system's changes.}, language = {en} } @article{BaslerNikoloski2011, author = {Basler, Georg and Nikoloski, Zoran}, title = {JMassBalance - mass-balanced randomization and analysis of metabolic networks}, series = {Bioinformatics}, volume = {27}, journal = {Bioinformatics}, number = {19}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btr448}, pages = {2761 -- 2762}, year = {2011}, abstract = {Analysis of biological networks requires assessing the statistical significance of network-based predictions by using a realistic null model. However, the existing network null model, switch randomization, is unsuitable for metabolic networks, as it does not include physical constraints and generates unrealistic reactions. We present JMassBalance, a tool for mass-balanced randomization and analysis of metabolic networks. The tool allows efficient generation of large sets of randomized networks under the physical constraint of mass balance. In addition, various structural properties of the original and randomized networks can be calculated, facilitating the identification of the salient properties of metabolic networks with a biologically meaningful null model.}, language = {en} } @article{BaslerGrimbsNikoloski2012, author = {Basler, Georg and Grimbs, Sergio and Nikoloski, Zoran}, title = {Optimizing metabolic pathways by screening for feasible synthetic reactions}, series = {Biosystems : journal of biological and information processing sciences}, volume = {109}, journal = {Biosystems : journal of biological and information processing sciences}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0303-2647}, doi = {10.1016/j.biosystems.2012.04.007}, pages = {186 -- 191}, year = {2012}, abstract = {Background: Reconstruction of genome-scale metabolic networks has resulted in models capable of reproducing experimentally observed biomass yield/growth rates and predicting the effect of alterations in metabolism for biotechnological applications. The existing studies rely on modifying the metabolic network of an investigated organism by removing or inserting reactions taken either from evolutionary similar organisms or from databases of biochemical reactions (e.g., KEGG). A potential disadvantage of these knowledge-driven approaches is that the result is biased towards known reactions, as such approaches do not account for the possibility of including novel enzymes, together with the reactions they catalyze. Results: Here, we explore the alternative of increasing biomass yield in three model organisms, namely Bacillus subtilis, Escherichia coil, and Hordeum vulgare, by applying small, chemically feasible network modifications. We use the predicted and experimentally confirmed growth rates of the wild-type networks as reference values and determine the effect of inserting mass-balanced, thermodynamically feasible reactions on predictions of growth rate by using flux balance analysis. Conclusions: While many replacements of existing reactions naturally lead to a decrease or complete loss of biomass production ability, in all three investigated organisms we find feasible modifications which facilitate a significant increase in this biological function. We focus on modifications with feasible chemical properties and a significant increase in biomass yield. The results demonstrate that small modifications are sufficient to substantially alter biomass yield in the three organisms. The method can be used to predict the effect of targeted modifications on the yield of any set of metabolites (e.g., ethanol), thus providing a computational framework for synthetic metabolic engineering.}, language = {en} } @article{BaslerGrimbsEbenhoehetal.2012, author = {Basler, Georg and Grimbs, Sergio and Ebenh{\"o}h, Oliver and Selbig, Joachim and Nikoloski, Zoran}, title = {Evolutionary significance of metabolic network properties}, series = {Interface : journal of the Royal Society}, volume = {9}, journal = {Interface : journal of the Royal Society}, number = {71}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2011.0652}, pages = {1168 -- 1176}, year = {2012}, abstract = {Complex networks have been successfully employed to represent different levels of biological systems, ranging from gene regulation to protein-protein interactions and metabolism. Network-based research has mainly focused on identifying unifying structural properties, such as small average path length, large clustering coefficient, heavy-tail degree distribution and hierarchical organization, viewed as requirements for efficient and robust system architectures. However, for biological networks, it is unclear to what extent these properties reflect the evolutionary history of the represented systems. Here, we show that the salient structural properties of six metabolic networks from all kingdoms of life may be inherently related to the evolution and functional organization of metabolism by employing network randomization under mass balance constraints. Contrary to the results from the common Markov-chain switching algorithm, our findings suggest the evolutionary importance of the small-world hypothesis as a fundamental design principle of complex networks. The approach may help us to determine the biologically meaningful properties that result from evolutionary pressure imposed on metabolism, such as the global impact of local reaction knockouts. Moreover, the approach can be applied to test to what extent novel structural properties can be used to draw biologically meaningful hypothesis or predictions from structure alone.}, language = {en} } @article{BaslerEbenhoehSelbigetal.2011, author = {Basler, Georg and Ebenhoeh, Oliver and Selbig, Joachim and Nikoloski, Zoran}, title = {Mass-balanced randomization of metabolic networks}, series = {Bioinformatics}, volume = {27}, journal = {Bioinformatics}, number = {10}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btr145}, pages = {1397 -- 1403}, year = {2011}, abstract = {Motivation: Network-centered studies in systems biology attempt to integrate the topological properties of biological networks with experimental data in order to make predictions and posit hypotheses. For any topology-based prediction, it is necessary to first assess the significance of the analyzed property in a biologically meaningful context. Therefore, devising network null models, carefully tailored to the topological and biochemical constraints imposed on the network, remains an important computational problem. Results: We first review the shortcomings of the existing generic sampling scheme-switch randomization-and explain its unsuitability for application to metabolic networks. We then devise a novel polynomial-time algorithm for randomizing metabolic networks under the (bio)chemical constraint of mass balance. The tractability of our method follows from the concept of mass equivalence classes, defined on the representation of compounds in the vector space over chemical elements. We finally demonstrate the uniformity of the proposed method on seven genome-scale metabolic networks, and empirically validate the theoretical findings. The proposed method allows a biologically meaningful estimation of significance for metabolic network properties.}, language = {en} }