@article{EckertVazdaCruzErtanetal.2018, author = {Eckert, Sebastian and Vaz da Cruz, Vinicius and Ertan, Emelie and Ignatova, Nina and Polyutov, Sergey and Couto, Rafael C. and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.053410}, pages = {7}, year = {2018}, abstract = {The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.}, language = {en} } @article{ErtanSavchenkoIgnatovaetal.2018, author = {Ertan, Emelie and Savchenko, Viktoriia and Ignatova, Nina and Vaz da Cruz, Vinicius and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor}, title = {Ultrafast dissociation features in RIXS spectra of the water molecule}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp01807c}, pages = {14384 -- 14397}, year = {2018}, abstract = {In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s-1O4a11〉. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b-114a11〉 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass.}, language = {en} } @article{LiuIgnatovaKimbergetal.2022, author = {Liu, Ji-Cai and Ignatova, Nina and Kimberg, Victor and Krasnov, Pavel and F{\"o}hlisch, Alexander and Simon, Marc and Gel'mukhanov, Faris}, title = {Time-resolved study of recoil-induced rotation by X-ray pump - X-ray probe spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp05000a}, pages = {6627 -- 6638}, year = {2022}, abstract = {Modern stationary X-ray spectroscopy is unable to resolve rotational structure. In the present paper, we propose to use time-resolved two color X-ray pump-probe spectroscopy with picosecond resolution for real-time monitoring of the rotational dynamics induced by the recoil effect. The proposed technique consists of two steps. The first short pump X-ray pulse ionizes the valence electron, which transfers angular momentum to the molecule. The second time-delayed short probe X-ray pulse resonantly excites a 1s electron to the created valence hole. Due to the recoil-induced angular momentum the molecule rotates and changes the orientation of transition dipole moment of core-excitation with respect to the transition dipole moment of the valence ionization, which results in a temporal modulation of the probe X-ray absorption as a function of the delay time between the pulses. We developed an accurate theory of the X-ray pump-probe spectroscopy of the recoil-induced rotation and study how the energy of the photoelectron and thermal dephasing affect the structure of the time-dependent X-ray absorption using the CO molecule as a case-study. We also discuss the feasibility of experimental observation of our theoretical findings, opening new perspectives in studies of molecular rotational dynamics.}, language = {en} } @article{VazdaCruzIgnatovaCoutoetal.2019, author = {Vaz da Cruz, Vin{\´i}cius and Ignatova, Nina and Couto, Rafael and Fedotov, Daniil and Rehn, Dirk R. and Savchenko, Viktoriia and Norman, Patrick and {\AA}gren, Hans and Polyutov, Sergey and Niskanen, Johannes and Eckert, Sebastian and Jay, Raphael Martin and Fondell, Mattis and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor and Gel'mukhanov, Faris}, title = {Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5092174}, pages = {20}, year = {2019}, abstract = {We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s).}, language = {en} }