@misc{LindnerMoellerDresenetal.2022, author = {Lindner, Nadja and Moeller, Korbinian and Dresen, Verena and Pixner, Silvia and Lonnemann, Jan}, title = {Children's spatial language skills predict their verbal number skills}, number = {827}, issn = {1866-8364}, doi = {10.25932/publishup-58729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587298}, pages = {15}, year = {2022}, abstract = {The process of number symbolization is assumed to be critically influenced by the acquisition of so-called verbal number skills (e.g., verbally reciting the number chain and naming Arabic numerals). For the acquisition of these verbal number skills, verbal and visuospatial skills are discussed as contributing factors. In this context, children's verbal number skills have been found to be associated with their concurrent spatial language skills such as mastery of verbal descriptions of spatial position (e.g., in front of, behind). In a longitudinal study with three measurement times (T1, T2, T3) at an interval of about 6 months, we evaluated the predictive role of preschool children's (mean age at T1: 3 years and 10 months) spatial language skills for the acquisition of verbal number skills. Children's spatial language skills at T2 significantly predicted their verbal number skills at T3, when controlling for influences of important covariates such as vocabulary knowledge. In addition, further analyses replicated previous results indicating that children's spatial language skills at T2 were associated with their verbal number skills at T2. Exploratory analyses further revealed that children's verbal number skills at T1 predict their spatial language at T2. Results suggests that better spatial language skills at the age of 4 years facilitate the future acquisition of verbal number skills.}, language = {en} } @misc{LindnerMoellerHildebrandtetal.2022, author = {Lindner, Nadja and Moeller, Korbinian and Hildebrandt, Frauke and Hasselhorn, Marcus and Lonnemann, Jan}, title = {Children's use of egocentric reference frames in spatial language is related to their numerical magnitude understanding}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {815}, issn = {1866-8364}, doi = {10.25932/publishup-58127}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581270}, pages = {13}, year = {2022}, abstract = {Numerical magnitude information is assumed to be spatially represented in the form of a mental number line defined with respect to a body-centred, egocentric frame of reference. In this context, spatial language skills such as mastery of verbal descriptions of spatial position (e.g., in front of, behind, to the right/left) have been proposed to be relevant for grasping spatial relations between numerical magnitudes on the mental number line. We examined 4- to 5-year-old's spatial language skills in tasks that allow responses in egocentric and allocentric frames of reference, as well as their relative understanding of numerical magnitude (assessed by a number word comparison task). In addition, we evaluated influences of children's absolute understanding of numerical magnitude assessed by their number word comprehension (montring different numbers using their fingers) and of their knowledge on numerical sequences (determining predecessors and successors as well as identifying missing dice patterns of a series). Results indicated that when considering responses that corresponded to the egocentric perspective, children's spatial language was associated significantly with their relative numerical magnitude understanding, even after controlling for covariates, such as children's SES, mental rotation skills, and also absolute magnitude understanding or knowledge on numerical sequences. This suggests that the use of egocentric reference frames in spatial language may facilitate spatial representation of numbers along a mental number line and thus seem important for preschoolers' relative understanding of numerical magnitude.}, language = {en} } @misc{LonnemannHasselhorn2018, author = {Lonnemann, Jan and Hasselhorn, Marcus}, title = {Fr{\"u}he mathematische Bildung}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {636}, issn = {1866-8364}, doi = {10.25932/publishup-44148}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441484}, pages = {129 -- 134}, year = {2018}, abstract = {Im vorliegenden Beitrag werden aktuelle Forschungstrends im Bereich der fr{\"u}hen mathematischen Bildung im Kontext j{\"u}ngst formulierter Zieldimensionen f{\"u}r die fr{\"u}he mathematische Bildung (siehe Benz et al., 2017) dargestellt. Es wird auf spielbasierte F{\"o}rdermaßnahmen, Kompetenzen im Bereich „Raum und Form", den Einfluss sprachlicher Parameter auf die Entwicklung mathematischer Kompetenzen sowie auf mathematikbezogene Kompetenzen fr{\"u}hp{\"a}dagogischer Fachkr{\"a}fte eingegangen. Dar{\"u}ber hinaus werden die Ergebnisse einer aktuellen Feldstudie zur F{\"o}rderung fr{\"u}her mathematischer Kompetenzen (siehe Dillon, Kannan, Dean, Spelke \& Duflo, 2017) vorgestellt. Abschließend wird die Entwicklung und Implementierung anschlussf{\"a}higer Bildungskonzepte als eine der zentralen Herausforderungen zuk{\"u}nftiger Forschungs- und Bildungsbem{\"u}hungen diskutiert}, language = {de} } @misc{LonnemannLiZhaoetal.2018, author = {Lonnemann, Jan and Li, Su and Zhao, Pei and Linkersd{\"o}rfer, Janosch and Lindberg, Sven and Hasselhorn, Marcus}, title = {Differences in Counting Skills Between Chinese and German Children Are Accompanied by Differences in Processing of Approximate Numerical Magnitude Information}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {546}, issn = {1866-8364}, doi = {10.25932/publishup-42742}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427425}, pages = {8}, year = {2018}, abstract = {Human beings are supposed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information as well as an object tracking system (OTS) for the rapid and accurate enumeration of small sets. It is assumed that the OTS and the ANS independently contribute to the acquisition of more elaborate numerical concepts. Chinese children have been shown to exhibit more elaborate numerical concepts than their non-Chinese peers, but it is still an open question whether similar cross-national differences exist with regard to the underlying systems, namely the ANS and the OTS. In the present study, we investigated this question by comparing Chinese and German preschool children with regard to their performance in a non-symbolic numerical magnitude comparison task (assessing the ANS) and in an enumeration task (assessing the OTS). In addition, we compared children's counting skills. To ensure that possible between-group differences could not be explained by differences in more general performance factors, we also assessed children's reasoning ability and processing speed. Chinese children showed a better counting performance and a more accurate performance in the non-symbolic numerical magnitude comparison task. These differences in performance could not be ascribed to differences in reasoning abilities and processing speed. In contrast, Chinese and German children did not differ significantly in the enumeration of small sets. The superior counting performance of Chinese children was thus found to be reflected in the ANS but not in the OTS.}, language = {en} } @misc{SixtusLonnemannFischeretal.2019, author = {Sixtus, Elena and Lonnemann, Jan and Fischer, Martin H. and Werner, Karsten}, title = {Mental Number Representations in 2D Space}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {538}, issn = {1866-8364}, doi = {10.25932/publishup-42496}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424960}, year = {2019}, abstract = {There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where "more is up." Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space.}, language = {en} }