@misc{ParaskevopoulouDennisWeithoffetal.2019, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Hartmann, Stefanie and Tiedemann, Ralph}, title = {Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {796}, issn = {1866-8372}, doi = {10.25932/publishup-44105}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441050}, pages = {23}, year = {2019}, abstract = {Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics).}, language = {en} } @article{ParaskevopoulouDennisWeithoffetal.2019, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Hartmann, Stefanie and Tiedemann, Ralph}, title = {Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {14}, publisher = {PLoS ONE}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0223134}, pages = {21}, year = {2019}, abstract = {Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics).}, language = {en} } @article{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-27137-3}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} } @misc{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1305}, issn = {1866-8372}, doi = {10.25932/publishup-57863}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578635}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} } @article{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-27137-3}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} } @article{WronskiWacherHammondetal.2010, author = {Wronski, Torsten and Wacher, Timothy and Hammond, Robert L. and Winney, Bruce and Hundertmark, Kris J. and Blacket, Mark J. and Mohammed, Osama B. and Flores, Benito and Omer, Sawsan A. and Macasero, William and Plath, Martin and Tiedemann, Ralph and Bleidorn, Christoph}, title = {Two reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Mountain gazelles (Gazella gazella)}, issn = {1477-2000}, doi = {10.1080/14772001003613192}, year = {2010}, abstract = {Mountain gazelles (Gazella gazella) rank among the most critically endangered mammals on the Arabian Peninsula. Past conservation efforts have been plagued by confusion about the phylogenetic relationship among various 'phenotypically discernable' populations, and even the question of species boundaries was far from being certain. This lack of knowledge has had a direct impact on conservation measures, especially ex situ breeding programmes, hampering the assignment of captive stocks to potential conservation units. Here, we provide a phylogenetic framework, based on the analysis of mtDNA sequences (360 bp cytochrome b and 213 bp Control Region) of 126 individuals collected from the wild throughout the Arabian Peninsula and from captive stocks. Our analyses revealed two reciprocally monophyletic genetic lineages within the presumed species Gazella gazella: one 'northern clade' on the Golan Heights (Israel/Syrian border) and one genetically diverse larger clade from the rest of the Arabian Peninsula including the Arava Valley (Negev, Israel). Applying the Strict Phylogenetic Species Concept (sensu Mishler \& Theriot, 2000) allows assigning species status to these two major clades.}, language = {en} } @article{CanitzKirschbaumTiedemann2020, author = {Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species}, series = {PLoS one}, volume = {15}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0240812}, pages = {21}, year = {2020}, abstract = {African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.}, language = {en} } @article{SchedinaGrothSchluppetal.2018, author = {Schedina, Ina Maria and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna}, series = {BMC Genomics}, volume = {19}, journal = {BMC Genomics}, number = {12}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-017-4382-2}, pages = {1 -- 18}, year = {2018}, abstract = {Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40\% of the transcripts for each species were functionally annotated and about 70\% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species.}, language = {en} } @misc{SchedinaGrothSchluppetal.2018, author = {Schedina, Ina Maria and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409299}, pages = {18}, year = {2018}, abstract = {Abstract Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40\% of the transcripts for each species were functionally annotated and about 70\% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species.}, language = {en} } @article{VernesiPecchioliTiedemannetal.2002, author = {Vernesi, C. and Pecchioli, E. and Tiedemann, Ralph and Randi, E. and Bertorelle, G.}, title = {The genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and central Italy, with reference to the mitochondrial DNA phylogeography of Europe}, issn = {0962-1083}, year = {2002}, language = {en} } @article{GroblerHartlGrobleretal.2005, author = {Grobler, J. P. and Hartl, G. B. and Grobler, N. and Kotze, A. and Botha, K. and Tiedemann, Ralph}, title = {The genetic status of an isolated black wildebeest (Connochaetes gnou) population from the Abe Bailey Nature Reserve, South Africa : Microsatellite data on a putative past hybridization with blue wildebeest (C-taurinus)}, issn = {1616-5047}, year = {2005}, abstract = {The present study aimed at assessing genetic purity of black wildebeest (Connochoetes gnou) at Abe Bailey Nature Reserve, Gauteng Province, South Africa, using a multitocus microsatellite approach. Five loci were studied in black and blue (C. taurinus) wildebeest, the latter being a closely related species and known to produce hybrids with the morphologically very similar black wildebeest. In fact, the entire national black wildebeest population of South Africa potentially contains a significant proportion of introgressed blue wildebeest genes. In our case, eight out of 39 alleles were unique to black and 22 to blue wildebeest, with nine alleles shared between pure populations of the two species in Line with their taxonomic proximity. A possible Limited past introgression of blue wildebeest genes into the Abe Bailey population, corresponding to documents on population history, was only supported by the presence of a single allele otherwise exclusively found in samples of four pure blue but not in samples of two pure black wildebeest control populations. However, an assignment test and coefficients of population divergence did not support an extended introgression of C. taurinus alleles into the C. gnou population under study. Average heterozygosity at Abe Bailey proved to be intermediate between black and blue wildebeest, the tatter species generally harbouring more genetic variation than the former owing to larger population sizes and the absence of population bottlenecks in historical times. The implications of our data are discussed with reference to the persistence of introgressed genes and the conservation of pure black wildebeest gene pools}, language = {en} } @article{DeCahsanWestburyDrewsetal.2019, author = {De Cahsan, Binia and Westbury, Michael V. and Drews, Hauke and Tiedemann, Ralph}, title = {The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany}, series = {Mitochondrial DNA Part B}, volume = {4}, journal = {Mitochondrial DNA Part B}, number = {1}, publisher = {Taylor \& Francis Group}, address = {London}, issn = {2380-2359}, doi = {10.1080/23802359.2018.1547143}, pages = {498 -- 500}, year = {2019}, abstract = {The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.}, language = {en} } @misc{DeCahsanWestburyDrewsetal.2019, author = {De Cahsan, Binia and Westbury, Michael V. and Drews, Hauke and Tiedemann, Ralph}, title = {The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {532}, issn = {1866-8372}, doi = {10.25932/publishup-42322}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423222}, pages = {3}, year = {2019}, abstract = {The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.}, language = {en} } @article{PavesiDeMatthaeisTiedemannetal.2011, author = {Pavesi, Laura and De Matthaeis, Elvira and Tiedemann, Ralph and Ketmaier, Valerio}, title = {Temporal population genetics and COI phylogeography of the sandhopper macarorchestia remyi (Amphipoda: Talitridae)}, series = {Zoological studies}, volume = {50}, journal = {Zoological studies}, number = {2}, publisher = {Institute of Zoology, Academia Sinica}, address = {Taipei}, issn = {1021-5506}, pages = {220 -- 229}, year = {2011}, abstract = {Laura Pavesi, Elvira De Matthaeis, Ralph Tiedemann, and Valerio Ketmaier (2011) Temporal population genetics and COI phylogeography of the sandhopper Macarorchestia remyi (Amphipoda: Talitridae). Zoological Studies 50(2): 220-229. In this study we assessed levels of genetic divergence and variability in 208 individuals of the supralittoral sandhopper Macarorchestia remyi, a species strictly associated with rotted wood stranded on sand beaches, by analyzing sequence polymorphisms in a fragment of the mitochondrial DNA (mtDNA) gene coding cytochrome oxidase subunit I (COI). The geographical distribution and ecology of the species are poorly known. The study includes 1 Tyrrhenian and 2 Adriatic populations sampled along the Italian peninsula plus a single individual found on Corfu Is. (Greece). The Tyrrhenian population was sampled monthly for 1 yr. Genetic data revealed a deep phylogeographic break between the Tyrrhenian and Adriatic populations with no shared haplotypes. The single individual collected on Corfu Is. carried the most common haplotype found in the Tyrrhenian population. A mismatch analysis could not reject the hypothesis of a sudden demographic expansion in almost all but 2 monthly samples. When compared to previous genetic data centered on a variety of Mediterranean talitrids, our results place M. remyi among those species with profound intraspecific divergence (sandhoppers) and dissimilar from beachfleas, which generally display little population genetic structuring.}, language = {en} } @article{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-35550-w}, pages = {9}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} } @misc{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1052}, issn = {1866-8372}, doi = {10.25932/publishup-46835}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468352}, pages = {11}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} } @article{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-70173-0}, pages = {15}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @misc{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1012}, issn = {1866-8372}, doi = {10.25932/publishup-48228}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482280}, pages = {17}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @article{SchnitzlerReckendorfPinzoneetal.2018, author = {Schnitzler, Joseph G. and Reckendorf, Anja and Pinzone, Marianna and Autenrieth, Marijke and Tiedemann, Ralph and Covaci, Adrian and Malarvannan, Govindan and Ruser, Andreas and Das, Krishna and Siebert, Ursula}, title = {Supporting evidence for PCB pollution threatening global killer whale population}, series = {Aquatic Toxicology}, volume = {206}, journal = {Aquatic Toxicology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0166-445X}, doi = {10.1016/j.aquatox.2018.11.008}, pages = {102 -- 104}, year = {2018}, abstract = {A recent Science report predicted the global killer whale population to collapse due to PCB pollution. Here we present empirical evidence, which supports and extends the reports' statement. In 2016, a neonate male killer whale stranded on the German island of Sylt. Neonatal attributes indicated an age of at least 3 days. The stomach contained ∼20 mL milk residue and no pathologies explaining the cause of death could be detected. Blubber samples presenting low lipid concentrations were analysed for persistent organic pollutants. Skin samples were collected for genotyping of the mitochondrial control region. The blubber PCB concentrations were very high [SPCBs, 225 mg/kg lipid weight (lw)], largely exceeding the PCB toxicity thresholds reported for the onset of immunosuppression [9 mg/kg lw ∑PCB] and for severe reproductive impairment [41 mg/kg lw ∑PCB] reported for marine mammals. Additionally, this individual showed equally high concentrations in p,p'-DDE [226 mg/kg lw], PBDEs [5 mg/kg lw] and liver mercury levels [1.1 μg/g dry weight dw]. These results suggest a high placental transfer of pollutants from mother to foetus. Consequently, blubber and plasma PCB concentrations and calf mortality rates are both high in primiparous females. With such high pollutant levels, this neonate had poor prerequisites for survival. The neonate belonged to Ecotype I (generalist feeder) and carried the mitochondrial haplotype 35 present in about 16\% of the North Atlantic killer whale from or close to the North Sea. The relevance of this data becomes apparent in the UK West Coast Community, the UK's only residentorca population, which is currently composed of only eight individuals (each four males and females) and no calves have been reported over the last 19 years.Despite worldwide regulations, PCBs persist in the environment and remain a severe concern for killer whale populations, placing calves at high risk due to the mother-offspring PCB-transfer resulting in a high toxicological burden of the neonates.}, language = {en} } @article{SenczukHavensteinMilanaetal.2018, author = {Senczuk, Gabriele and Havenstein, Katja and Milana, Valentina and Ripa, Chiara and De Simone, Emanuela and Tiedemann, Ralph and Castiglia, Riccardo}, title = {Spotlight on islands}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-33326-w}, pages = {12}, year = {2018}, abstract = {Groups of proximate continental islands may conceal more tangled phylogeographic patterns than oceanic archipelagos as a consequence of repeated sea level changes, which allow populations to experience gene flow during periods of low sea level stands and isolation by vicariant mechanisms during periods of high sea level stands. Here, we describe for the first time an ancient and diverging lineage of the Italian wall lizard Podarcis siculus from the western Pontine Islands. We used nuclear and mitochondrial DNA sequences of 156 individuals with the aim of unraveling their phylogenetic position, while microsatellite loci were used to test several a priori insular biogeographic models of migration with empirical data. Our results suggest that the western Pontine populations colonized the islands early during their Pliocene volcanic formation, while populations from the eastern Pontine Islands seem to have been introduced recently. The inter-island genetic makeup indicates an important role of historical migration, probably due to glacial land bridges connecting islands followed by a recent vicariant mechanism of isolation. Moreover, the most supported migration model predicted higher gene flow among islands which are geographically arranged in parallel. Considering the threatened status of small insular endemic populations, we suggest this new evolutionarily independent unit be given priority in conservation efforts.}, language = {en} } @misc{SenczukHavensteinMilanaetal.2018, author = {Senczuk, Gabriele and Havenstein, Katja and Milana, Valentina and Ripa, Chiara and De Simone, Emanuela and Tiedemann, Ralph and Castiglia, Riccardo}, title = {Spotlight on islands}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {991}, issn = {1866-8372}, doi = {10.25932/publishup-44636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446360}, pages = {14}, year = {2018}, abstract = {Groups of proximate continental islands may conceal more tangled phylogeographic patterns than oceanic archipelagos as a consequence of repeated sea level changes, which allow populations to experience gene flow during periods of low sea level stands and isolation by vicariant mechanisms during periods of high sea level stands. Here, we describe for the first time an ancient and diverging lineage of the Italian wall lizard Podarcis siculus from the western Pontine Islands. We used nuclear and mitochondrial DNA sequences of 156 individuals with the aim of unraveling their phylogenetic position, while microsatellite loci were used to test several a priori insular biogeographic models of migration with empirical data. Our results suggest that the western Pontine populations colonized the islands early during their Pliocene volcanic formation, while populations from the eastern Pontine Islands seem to have been introduced recently. The inter-island genetic makeup indicates an important role of historical migration, probably due to glacial land bridges connecting islands followed by a recent vicariant mechanism of isolation. Moreover, the most supported migration model predicted higher gene flow among islands which are geographically arranged in parallel. Considering the threatened status of small insular endemic populations, we suggest this new evolutionarily independent unit be given priority in conservation efforts.}, language = {en} } @article{LamannaKirschbaumErnstetal.2016, author = {Lamanna, Francesco and Kirschbaum, Frank and Ernst, Anja R. R. and Feulner, Philine G. D. and Mamonekene, Victor and Paul, Christiane and Tiedemann, Ralph}, title = {Species delimitation and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus)}, series = {Molecular phylogenetics and evolution}, volume = {101}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2016.04.035}, pages = {8 -- 18}, year = {2016}, abstract = {African weakly-electric fishes (Mormyridae) are able to communicate through species-specific electric signals; this feature might have favoured the evolutionary radiation observed in this family (over 200 species) by acting as an effective pre-zygotic isolation mechanism. In the present study we used mitochondria((cytb) and nuclear (rps7, scn4aa) markers in order to reconstruct a species-phylogeny and identify species boundaries for the genus Campylomormyrus, by applying inference methods based on the multispecies coalescent model. Additionally, we employed 16 microsatellite markers, landmark-based morphometric measurements, and electro-physiological analyses as independent lines of evidence to the results obtained from the sequence data. The results show that groups that are morphologically different are also significantly divergent at the genetic level, whereas morphologically similar groups, displaying dissimilar electric signals, do not show enough genetic diversity to be considered separate species. Furthermore, the data confirm the presence of a yet undescribed species within the genus Campylomormyrus. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{LahTrenseBenkeetal.2016, author = {Lah, Ljerka and Trense, Daronja and Benke, Harald and Berggren, Per and Gunnlaugsson, Porvaldur and Lockyer, Christina and {\"O}zt{\"u}rk, Ayaka and {\"O}zt{\"u}rk, Bayram and Pawliczka, Iwona and Roos, Anna and Siebert, Ursula and Skora, Krzysztof and Vikingsson, Gisli and Tiedemann, Ralph}, title = {Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0162792}, pages = {23}, year = {2016}, abstract = {The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymor-phisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis.}, language = {en} } @article{LahTrenseBenkeetal.2016, author = {Lah, Ljerka and Trense, Daronja and Benke, Harald and Berggren, Per and Gunnlaugsson, Þorvaldur and Lockyer, Christina and {\"O}zt{\"u}rk, Ayaka and {\"O}zt{\"u}rk, Bayram and Pawliczka, Iwona and Roos, Anna and Siebert, Ursula and Sk{\´o}ra, Krzysztof and V{\´i}kingsson, G{\´i}sli and Tiedemann, Ralph}, title = {Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0162792}, pages = {23 Seiten}, year = {2016}, abstract = {The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis.}, language = {en} } @misc{LahTrenseBenkeetal.2016, author = {Lah, Ljerka and Trense, Daronja and Benke, Harald and Berggren, Per and Gunnlaugsson, Þorvaldur and Lockyer, Christina and {\"O}zt{\"u}rk, Ayaka and {\"O}zt{\"u}rk, Bayram and Pawliczka, Iwona and Roos, Anna and Siebert, Ursula and Sk{\´o}ra, Krzysztof and V{\´i}kingsson, G{\´i}sli and Tiedemann, Ralph}, title = {Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100813}, pages = {23 Seiten}, year = {2016}, abstract = {The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis.}, language = {en} } @misc{CahsanKiemelWestburyetal.2021, author = {Cahsan, Binia De and Kiemel, Katrin and Westbury, Michael V. and Lauritsen, Maike and Autenrieth, Marijke and Gollmann, G{\"u}nter and Schweiger, Silke and Stenberg, Marika and Nystr{\"o}m, Per and Drews, Hauke and Tiedemann, Ralph}, title = {Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {14}, issn = {1866-8372}, doi = {10.25932/publishup-52388}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523883}, pages = {17}, year = {2021}, abstract = {Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Sk{\aa}ne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.}, language = {en} } @article{CahsanKiemelWestburyetal.2021, author = {Cahsan, Binia De and Kiemel, Katrin and Westbury, Michael V. and Lauritsen, Maike and Autenrieth, Marijke and Gollmann, G{\"u}nter and Schweiger, Silke and Stenberg, Marika and Nystr{\"o}m, Per and Drews, Hauke and Tiedemann, Ralph}, title = {Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {14}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {2045-7758}, pages = {15}, year = {2021}, abstract = {Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Sk{\aa}ne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.}, language = {en} } @misc{NeyeWallschlaegerTiedemann2006, author = {Neye, Gundula and Wallschl{\"a}ger, Hans-Dieter and Tiedemann, Ralph}, title = {Song dialect boundaries in the Yellowhammer: Do they restrict gene flow?}, series = {Journal of ornithology}, volume = {147}, journal = {Journal of ornithology}, number = {Supplement 1}, publisher = {Blackwell}, address = {New York}, issn = {0021-8375}, pages = {219 -- 219}, year = {2006}, language = {en} } @article{NahavandiPlathTiedemannetal.2011, author = {Nahavandi, Nahid and Plath, Martin and Tiedemann, Ralph and Mirzajani, Ali R.}, title = {Sexual and natural selection on morphological traits in a marine amphipod, Pontogammarus maeoticus (Sowinsky, 1894)}, series = {Marine biology research}, volume = {7}, journal = {Marine biology research}, number = {2}, publisher = {Taylor \& Francis Group}, address = {Oslo}, issn = {1745-1000}, doi = {10.1080/17451001003713589}, pages = {135 -- 146}, year = {2011}, abstract = {Sexual selection often leads to sexual dimorphism, where secondary sexual traits are more expressed in the male sex. This may be due, for example, to increased fighting or mate-guarding abilities of males expressing those traits. We investigated sexually dimorphic traits in four populations of a marine amphipod, Pontogammarus maeoticus (Gammaridea: Pontogammaridae), the most abundant amphipod species in the sublittoral zone along the southern shoreline of the Caspian Sea. Male amphipods are typically larger in body size than females, and have relatively larger posterior gnathopods and antennae. However, it remains to be studied for most other body appendages whether or not, and to what extent, they are sexually dimorphic. Using Analysis of Covariance (ANCOVA), we compared the relationships between body size and trait expression for 35 metric characters between males and females, and among the four populations examined by performing three different Discriminant Function Analyses (DFA). We detected several thus far undescribed sexual dimorphic traits such as the seventh peraeopods or the epimeral plates. We also found that the size of the propodus of the first and second gnathopods increases with increasing body size, and this allometric increase was stronger in males than in females. Finally, we found that the degree of sexual dimorphism in the expression of the width of the third epimeral plate varies across sites, suggesting that differences in ecology might affect the strength of sexual selection in different populations.}, language = {en} } @article{SchwarteWegnerHavensteinetal.2015, author = {Schwarte, Sandra and Wegner, Fanny and Havenstein, Katja and Groth, Detlef and Steup, Martin and Tiedemann, Ralph}, title = {Sequence variation, differential expression, and divergent evolution in starch-related genes among accessions of Arabidopsis thaliana}, series = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, volume = {87}, journal = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, number = {4-5}, publisher = {Springer}, address = {Dordrecht}, issn = {0167-4412}, doi = {10.1007/s11103-015-0293-2}, pages = {489 -- 519}, year = {2015}, abstract = {Transitory starch metabolism is a nonlinear and highly regulated process. It originated very early in the evolution of chloroplast-containing cells and is largely based on a mosaic of genes derived from either the eukaryotic host cell or the prokaryotic endosymbiont. Initially located in the cytoplasm, starch metabolism was rewired into plastids in Chloroplastida. Relocation was accompanied by gene duplications that occurred in most starch-related gene families and resulted in subfunctionalization of the respective gene products. Starch-related isozymes were then evolutionary conserved by constraints such as internal starch structure, posttranslational protein import into plastids and interactions with other starch-related proteins. 25 starch-related genes in 26 accessions of Arabidopsis thaliana were sequenced to assess intraspecific diversity, phylogenetic relationships, and modes of selection. Furthermore, sequences derived from additional 80 accessions that are publicly available were analyzed. Diversity varies significantly among the starch-related genes. Starch synthases and phosphorylases exhibit highest nucleotide diversities, while pyrophosphatases and debranching enzymes are most conserved. The gene trees are most compatible with a scenario of extensive recombination, perhaps in a Pleistocene refugium. Most genes are under purifying selection, but disruptive selection was inferred for a few genes/substitutiones. To study transcript levels, leaves were harvested throughout the light period. By quantifying the transcript levels and by analyzing the sequence of the respective accessions, we were able to estimate whether transcript levels are mainly determined by genetic (i.e., accession dependent) or physiological (i.e., time dependent) parameters. We also identified polymorphic sites that putatively affect pattern or the level of transcripts.}, language = {en} } @article{ZhuSchluppTiedemann2016, author = {Zhu, Fangjun and Schlupp, Ingo and Tiedemann, Ralph}, title = {Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0156209}, pages = {19}, year = {2016}, abstract = {The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs' embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess-as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., ar\&\#945;/ar\&\#946;, er\&\#945;/er\&\#946;1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, er\&\#946;1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of er\&\#945; in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as.}, language = {en} } @article{ZhuSchluppTiedemann2016, author = {Zhu, Fangjun and Schlupp, Ingo and Tiedemann, Ralph}, title = {Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, number = {6}, publisher = {PLoS}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/JOURNAL.PONE.0156209}, pages = {19}, year = {2016}, abstract = {The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs' embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess-as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of erα in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as.}, language = {en} } @misc{ZhuSchluppTiedemann2016, author = {Zhu, Fangjun and Schlupp, Ingo and Tiedemann, Ralph}, title = {Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97119}, pages = {19}, year = {2016}, abstract = {The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs' embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess-as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of erα in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {24}, publisher = {John Wiley \& Sons, Inc.}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @misc{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544265}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph and Ullmann, Wiebke and Blaum, Niels}, title = {Seed traits matter}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{GessnerArndtTiedemannetal.2006, author = {Gessner, J{\"o}rn and Arndt, Gerd-Michael and Tiedemann, Ralph and Bartel, Ryszard and Kirschbaum, Frank}, title = {Remediation measures for the Baltic sturgeon: status review and perspectives}, series = {Journal of applied ichthyology}, volume = {22}, journal = {Journal of applied ichthyology}, number = {S1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0175-8659}, doi = {10.1111/j.1439-0426.2007.00925.x}, pages = {23 -- 31}, year = {2006}, abstract = {More than one century ago, sturgeons were prevalent species in the fish communities of all major German rivers both in the North and the Baltic seas drainages. Since then, the populations declined rapidly due to river damming, overfishing and pollution. The last sturgeon catches in the Baltic drainage system occurred during the late 1960ies. Only a few individual captures have been reported during the last 30 years with the most recent records in the Lake Ladoga ( Russia), where the last confirmed catch was recorded in 1984, and a single individual caught off Estonia in 1996. Today, sturgeons are considered missing or extinct in German waters. First attempts for remediation of the species were undertaken in the mid 1990ies. Subsequently, phylogenetic and population genetic analyses of the species were carried out using mtDNA, microsatellites, and nuclear markers ( SNPs). These genetic analyses using recent and historic material have proven the existence of two different species in the Baltic Sea in what was previously considered to represent the European Atlantic sturgeon only. In the Baltic Sea, the American Atlantic sturgeon ( A. oxyrinchus) succeeded to colonize this brackish water system during the Middle Ages. In the North Sea, the European Atlantic sturgeon ( A. sturio) is considered to be the endemic species. These results led to the separation of the remediation activities in the North Sea and the Baltic Sea tributaries. Further studies on the mechanism that lead to the extinction of A. sturio in Germany and the subsequent succession of the A. oxyrinchus mtDNA haplotype are currently been carried out. Broodstock development using the northernmost populations of A. oxyrinchus is currently under way. As a further prerequisite to re-introduce this species into the Baltic, the evaluation of the status of critical habitats for the early life stages of the American Atlantic sturgeon in the River Odra has been performed in collaboration with the Institute for Inland Fisheries of Poland. Alternative fisheries techniques, based on the data of by-catch of exotic sturgeons in the fishery, are presently developed in close cooperation with the fishery to reduce fisheries related mortality in juvenile sturgeons upon release. Monitoring of habitat utilization and migration characteristics of juvenile fish upon experimental release will have to be carried out shortly, using acoustic telemetry, with the aim to follow the fate of the released fish and to determine the best time-size-release-window for future release programmes.}, language = {en} } @article{TomowskiLozadaGobilardJeltschetal.2023, author = {Tomowski, Maxi and Lozada-Gobilard, Sissi Donna and Jeltsch, Florian and Tiedemann, Ralph}, title = {Recruitment and migration patterns reveal a key role for seed banks in the meta-population dynamics of an aquatic plant}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-023-37974-5}, pages = {16}, year = {2023}, abstract = {Progressive habitat fragmentation threatens plant species with narrow habitat requirements. While local environmental conditions define population growth rates and recruitment success at the patch level, dispersal is critical for population viability at the landscape scale. Identifying the dynamics of plant meta-populations is often confounded by the uncertainty about soil-stored population compartments. We combined a landscape-scale assessment of an amphibious plant's population structure with measurements of dispersal complexity in time to track dispersal and putative shifts in functional connectivity. Using 13 microsatellite markers, we analyzed the genetic structure of extant Oenanthe aquatica populations and their soil seed banks in a kettle hole system to uncover hidden connectivity among populations in time and space. Considerable spatial genetic structure and isolation-by-distance suggest limited gene flow between sites. Spatial isolation and patch size showed minor effects on genetic diversity. Genetic similarity found among extant populations and their seed banks suggests increased local recruitment, despite some evidence of migration and recent colonization. Results indicate stepping-stone dispersal across adjacent populations. Among permanent and ephemeral demes the resulting meta-population demography could be determined by source-sink dynamics. Overall, these spatiotemporal connectivity patterns support mainland-island dynamics in our system, highlighting the importance of persistent seed banks as enduring sources of genetic diversity.}, language = {en} } @article{MilinkovitchKanitzTiedemannetal.2013, author = {Milinkovitch, Michel C. and Kanitz, Ricardo and Tiedemann, Ralph and Tapia, Washington and Llerena, Fausto and Caccone, Adalgisa and Gibbs, James P. and Powell, Jeffrey R.}, title = {Recovery of a nearly extinct Galapagos tortoise despite minimal genetic variation}, series = {Evolutionary applications}, volume = {6}, journal = {Evolutionary applications}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1752-4571}, doi = {10.1111/eva.12014}, pages = {377 -- 383}, year = {2013}, abstract = {A species of Galapagos tortoise endemic to Espanola Island was reduced to just 12 females and three males that have been bred in captivity since 1971 and have produced over 1700 offspring now repatriated to the island. Our molecular genetic analyses of juveniles repatriated to and surviving on the island indicate that none of the tortoises sampled in 1994 had hatched on the island versus 3\% in 2004 and 24\% in 2007, which demonstrates substantial and increasing reproduction in situ once again. This recovery occurred despite the parental population having an estimated effective population size <8 due to a combination of unequal reproductive success of the breeders and nonrandom mating in captivity. These results provide guidelines for adapting breeding regimes in the parental captive population and decreasing inbreeding in the repatriated population. Using simple morphological data scored on the sampled animals, we also show that a strongly heterogeneous distribution of tortoise sizes on Espanola Island observed today is due to a large variance in the number of animals included in yearly repatriation events performed in the last 40years. Our study reveals that, at least in the short run, some endangered species can recover dramatically despite a lack of genetic variation and irregular repatriation efforts.}, language = {en} } @misc{AutenriethErnstDeavilleetal.2018, author = {Autenrieth, Marijke and Ernst, Anja and Deaville, Rob and Demaret, Fabien and Ijsseldijk, Lonneke L. and Siebert, Ursula and Tiedemann, Ralph}, title = {Putative origin and maternal relatedness of male sperm whales (Physeter macrocephalus) recently stranded in the North Sea}, series = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, volume = {88}, journal = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1616-5047}, doi = {10.1016/j.mambio.2017.09.003}, pages = {156 -- 160}, year = {2018}, abstract = {The globally distributed sperm whale (Physeter macrocephalus) has a partly matrilineal social structure with predominant male dispersal. At the beginning of 2016, a total of 30 male sperm whales stranded in five different countries bordering the southern North Sea. It has been postulated that these individuals were on a migration route from the north to warmer temperate and tropical waters where females live in social groups. By including samples from four countries (n = 27), this event provided a unique chance to genetically investigate the maternal relatedness and the putative origin of these temporally and spatially co-occuring male sperm whales. To utilize existing genetic resources, we sequenced 422 bp of the mitochondrial control region, a molecular marker for which sperm whale data are readily available from the entire distribution range. Based on four single nucleotide polymorphisms (SNPs) within the mitochondrial control region, five matrilines could be distinguished within the stranded specimens, four of which matched published haplotypes previously described in the Atlantic. Among these male sperm whales, multiple matrilineal lineages co-occur. We analyzed the population differentiation and could show that the genetic diversity of these male sperm whales is comparable to the genetic diversity in sperm whales from the entire Atlantic Ocean. We confirm that within this stranding event, males do not comprise maternally related individuals and apparently include assemblages of individuals from different geographic regions. (c) 2017 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{DolgenerFreudenbergerSchneeweissetal.2014, author = {Dolgener, Nicola and Freudenberger, L. and Schneeweiss, N. and Ibisch, P. L. and Tiedemann, Ralph}, title = {Projecting current and potential future distribution of the Fire-bellied toad Bombina bombina under climate change in north-eastern Germany}, series = {Regional environmental change}, volume = {14}, journal = {Regional environmental change}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-013-0468-9}, pages = {1063 -- 1072}, year = {2014}, abstract = {Environmental change is likely to have a strong impact on biodiversity, and many species may shift their distribution in response. In this study, we aimed at projecting the availability of suitable habitat for an endangered amphibian species, the Fire-bellied toad Bombina bombina, in Brandenburg (north-eastern Germany). We modelled a potential habitat distribution map based on (1) a database with 10,581 presence records for Bombina from the years 1990 to 2009, (2) current estimates for ecogeographical variables (EGVs) and (3) the future projection of these EGVs according to the statistical regional model, respectively, the soil and water integrated model, applying the maximum entropy approach (Maxent). By comparing current and potential future distributions, we evaluated the projected change in distribution of suitable habitats and identified the environmental variables most associated with habitat suitability that turned out to be climatic variables related to the hydrological cycle. Under the applied scenario, our results indicate increasing habitat suitability in many areas and an extended range of suitable habitats. However, even if the environmental conditions in Brandenburg may change as predicted, it is questionable whether the Fire-bellied toad will truly benefit, as dispersal abilities of amphibian species are limited and strongly influenced by anthropogenic disturbances, that is, intensive agriculture, habitat destruction and fragmentation. Furthermore, agronomic pressure is likely to increase on productive areas with fertile soils and high water retention capacities, indeed those areas suitable for B. bombina. All these changes may affect temporary pond hydrology as well as the reproductive success and breeding phenology of toads.}, language = {en} } @article{SilvaIturrizaKetmaierTiedemann2012, author = {Silva-Iturriza, Adriana and Ketmaier, Valerio and Tiedemann, Ralph}, title = {Profound population structure in the Philippine Bulbul Hypsipetes philippinus (Pycnonotidae, Ayes) is not reflected in its Haemoproteus haemosporidian parasite}, series = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, volume = {12}, journal = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-1348}, doi = {10.1016/j.meegid.2011.10.024}, pages = {127 -- 136}, year = {2012}, abstract = {In this study we used molecular markers to screen for the occurrence and prevalence of the three most common haemosporidian genera (Haemoproteus, Plasmodium, and Leucocytozoon) in blood samples of the Philippine Bulbul (Hypsipetes philippinus), a thrush-size passerine bird endemic to the Philippine Archipelago. We then used molecular data to ask whether the phylogeographic patterns in this insular host-parasite system might follow similar evolutionary trajectories or not. We took advantage of a previous study describing the pattern of genetic structuring in the Philippine Bulbul across the Central Philippine Archipelago (6 islands, 7 populations and 58 individuals; three mitochondrial DNA genes). The very same birds were here screened for the occurrence of parasites by species-specific PCR assays of the mitochondrial cytochrome b gene (471 base pairs). Twenty-eight out of the 58 analysed birds had Haemoproteus (48\%) infections while just 2\% of the birds were infected with either Leucocytozoon or Plasmodium. Sixteen of the 28 birds carrying Haemoproteus had multiple infections. The phylogeography of the Philippine Bulbul mostly reflects the geographical origin of samples and it is consistent with the occurrence of two different subspecies on (1) Semirara and (2) Carabao, Boracay, North Gigante, Panay, and Negros, respectively. Haemoproteus phylogeography shows very little geographical structure, suggesting extensive gene flow among locations. While movements of birds among islands seem very sporadic, we found co-occurring evolutionary divergent parasite lineages. We conclude that historical processes have played a major role in shaping the host phylogeography, while they have left no signature in that of the parasites. Here ongoing population processes, possibly multiple reinvasions mediated by other hosts, are predominant.}, language = {en} } @article{SilvaIturrizaKetmaierTiedemann2012, author = {Silva-Iturriza, Adriana and Ketmaier, Valerio and Tiedemann, Ralph}, title = {Prevalence of avian haemosporidian parasites and their host fidelity in the central Philippine islands}, series = {PARASITOLOGY INTERNATIONAL}, volume = {61}, journal = {PARASITOLOGY INTERNATIONAL}, number = {4}, publisher = {ELSEVIER IRELAND LTD}, address = {CLARE}, issn = {1383-5769}, doi = {10.1016/j.parint.2012.07.003}, pages = {650 -- 657}, year = {2012}, abstract = {We examined the prevalence and host fidelity of avian haemosporidian parasites belonging to the genera Haemoproteus, Leucocytozoon and Plasmodium in the central Philippine islands by sampling 23 bird families (42 species). Using species-specific PCR assays of the mitochondrial cytochrome b gene (471 base pairs, bp), we detected infections in 91 of the 215 screened individuals (42\%). We also discriminated between single and multiple infections. Thirty-one infected individuals harbored a single Haemoproteus lineage (14\%), 18 a single Leucocytozoon lineage (8\%) and 12 a single Plasmodium lineage (6\%). Of the 215 screened birds, 30 (14\%) presented different types of multiple infections. Intrageneric mixed infections were generally more common (18 Haemoproteus/Haemoproteus, 3 Leucocytozoon/Leucocytozoon, and 1 Plasmodium/Plasmodium) than intergeneric mixed infections (7 Haemoproteus/Leucocytozoon and 1 Haemoproteus/Leucocytozoon/Plasmodium). We recovered 81 unique haemosporidian mitochondrial haplotypes. These clustered in three strongly supported monophyletic clades that correspond to the three haemosporidian genera. Related lineages of Haemoproteus and Leucocytozoon were more likely to derive from the same host family than predicted by chance; however, this was not the case for Plasmodium. These results indicate that switches between host families are more likely to occur in Plasmodium. We conclude that Haemoproteus has undergone a recent diversification across well-supported host-family specific clades, while Leucocytozoon shows a longer association with its host(s). This study supports previous evidence of a higher prevalence and stronger host-family specificity of Haemoproteus and Leucocytozoon compared to Plasmodium. (C) 2012 Elsevier Ireland Ltd. All rights reserved.}, language = {en} } @article{TaguchiGotoMatsuokaetal.2023, author = {Taguchi, Mioko and Goto, Mutsuo and Matsuoka, Koji and Tiedemann, Ralph and Pastene, Luis A.}, title = {Population genetic structure of Bryde's whales (Balaenoptera brydei) on the central and western North Pacific feeding grounds}, series = {Canadian Journal of Fisheries and Aquatic Sciences}, volume = {80}, journal = {Canadian Journal of Fisheries and Aquatic Sciences}, number = {1}, publisher = {Canadian science publishing}, address = {Ottawa}, issn = {0706-652X}, doi = {10.1139/cjfas-2022-0005}, pages = {142 -- 155}, year = {2023}, abstract = {The genetic structure of Bryde's whale (Balaenoptera brydei) on the central and western North Pacific feeding grounds was investigated using a total of 1195 mitochondrial control region sequences and 1182 microsatellite genotypes at 17 loci in specimens collected from three longitudinal areas, 1W (135 degrees E-165 degrees E), 1E (165 degrees E-180 degrees), and 2 (180 degrees-155 degrees W). Genetic diversities were similar among areas and a haplotype network did not show any geographic structure, while an analysis of molecular variance found evidence of genetic structure in this species. Pairwise FST and G'ST estimates and heterogeneity tests attributed this structure to weak but significant differentiation between areas 1W/1E and 2. A Mantel test and a high-resolution analysis of genetic diversity statistics showed a weak spatial cline of genetic differentiation. These findings could be reconciled by two possible stock structure scenarios: (1) a single population with kin-association affecting feeding ground preference and (2) two populations with feeding ground preference for either area 1W or area 2. An estimated dispersal rate between areas 1W and 2 indicates that both scenarios should be considered as a precautionary principle in stock assessments.}, language = {en} } @article{FoersterAsratRamseyetal.2022, author = {Foerster, Verena and Asrat, Asfawossen and Ramsey, Christopher Bronk and Brown, Erik T. and Chapot, Melissa S. and Deino, Alan and D{\"u}sing, Walter and Grove, Matthew and Hahn, Annette and Junginger, Annett and Kaboth-Bahr, Stefanie and Lane, Christine S. and Opitz, Stephan and Noren, Anders and Roberts, Helen M. and Stockhecke, Mona and Tiedemann, Ralph and Vidal, Celine M. and Vogelsang, Ralf and Cohen, Andrew S. and Lamb, Henry F. and Schaebitz, Frank and Trauth, Martin H.}, title = {Pleistocene climate variability in eastern Africa influenced hominin evolution}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-01032-y}, pages = {805 -- 811}, year = {2022}, abstract = {Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens.}, language = {en} } @article{DeCahsanNagelSchedinaetal.2020, author = {De Cahsan, Binia and Nagel, Rebecca and Schedina, Ina-Maria and King, James J. and Bianco, Pier G. and Tiedemann, Ralph and Ketmaier, Valerio}, title = {Phylogeography of the European brook lamprey (Lampetra planeri) and the European river lamprey (Lampetra fluviatilis) species pair based on mitochondrial data}, series = {Journal of fish biology}, volume = {96}, journal = {Journal of fish biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0022-1112}, doi = {10.1111/jfb.14279}, pages = {905 -- 912}, year = {2020}, abstract = {The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity.}, language = {en} } @article{StruckPaulHilletal.2011, author = {Struck, Torsten H. and Paul, Christiane and Hill, Natascha and Hartmann, Stefanie and Hoesel, Christoph and Kube, Michael and Lieb, Bernhard and Meyer, Achim and Tiedemann, Ralph and Purschke, Guenter and Bleidorn, Christoph}, title = {Phylogenomic analyses unravel annelid evolution}, series = {Nature : the international weekly journal of science}, volume = {471}, journal = {Nature : the international weekly journal of science}, number = {7336}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature09864}, pages = {95 -- U113}, year = {2011}, abstract = {Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida(1-4). However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative.}, language = {en} } @article{BonizzoniBourjeaChenetal.2011, author = {Bonizzoni, Mariangela and Bourjea, Jerome and Chen, Bin and Crain, B. J. and Cui, Liwang and Fiorentino, V. and Hartmann, Stefanie and Hendricks, S. and Ketmaier, Valerio and Ma, Xiaoguang and Muths, Delphine and Pavesi, Laura and Pfautsch, Simone and Rieger, M. A. and Santonastaso, T. and Sattabongkot, Jetsumon and Taron, C. H. and Taron, D. J. and Tiedemann, Ralph and Yan, Guiyun and Zheng, Bin and Zhong, Daibin}, title = {Permanent genetic resources added to molecular ecology resources database 1 April 2011-31 May 2011}, series = {Molecular ecology resources}, volume = {11}, journal = {Molecular ecology resources}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {Mol Ecology Resources Primer Dev}, issn = {1755-098X}, doi = {10.1111/j.1755-0998.2011.03046.x}, pages = {935 -- 936}, year = {2011}, abstract = {This article documents the addition of 92 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anopheles minimus, An. sinensis, An. dirus, Calephelis mutica, Lutjanus kasmira, Murella muralis and Orchestia montagui. These loci were cross-tested on the following species: Calephelis arizonensi, Calephelis borealis, Calephelis nemesis, Calephelis virginiensis and Lutjanus bengalensis.}, language = {en} } @article{WiesnerLoxdaleKoehleretal.2011, author = {Wiesner, Kerstin R. and Loxdale, Hugh D. and K{\"o}hler, G{\"u}nter and Schneider, Anja R. R. and Tiedemann, Ralph and Weisser, Wolfgang W.}, title = {Patterns of local and regional genetic structuring in the meadow grasshopper, Chorthippus parallelus (Orthoptera: Acrididae), in Central Germany revealed using microsatellite markers}, series = {Biological journal of the Linnean Society : a journal of evolution}, volume = {103}, journal = {Biological journal of the Linnean Society : a journal of evolution}, number = {4}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0024-4066}, doi = {10.1111/j.1095-8312.2011.01698.x}, pages = {875 -- 890}, year = {2011}, abstract = {The meadow grasshopper, Chorthippus parallelus (Zetterstedt), is common and widespread in Central Europe, with a low dispersal range per generation. A population study in Central Germany (Frankenwald and Thuringer Schiefergebirge) showed strong interpopulation differences in abundance and individual fitness. We examined genetic variability using microsatellite markers within and between 22 populations in a short-to long-distance sampling (19 populations, Frankenwald, Schiefergebirge, as well as a southern transect), and in the Erzgebirge region (three populations), with the latter aiming to check for effects as a result of historical forest cover. Of the 671 C. parallelus captured, none was macropterous (functionally winged). All populations showed a high level of expected and observed heterozygosity (mean 0.80-0.90 and 0.60-0.75, respectively), whereas there was evidence of inbreeding (F(IS) values all positive). Allelic richness for all locus-population combinations was high (mean 9.3-11.2), whereas alleles per locus ranged from 15-62. At a local level, genic and genotypic differences were significant. Pairwise F(ST) values were in the range 0.00-0.04, indicating little interpopulation genetic differentiation. Similarly, the calculated gene flow was very high, based on the respective F(ST) (19.5) and using private alleles (7.7). A Neighbour-joining tree using Nei's D(A) and principal coordinate analysis separated two populations that were collected in the Erzgebirge region. Populations from this region may have escaped the effects of the historical forest cover. The visualization of the spatial arrangement of genotypes revealed one geographical barrier to gene flow in the short-distance sampling.}, language = {en} } @article{KorniienkoTiedemannVateretal.2020, author = {Korniienko, Yevheniia and Tiedemann, Ralph and Vater, Marianne and Kirschbaum, Frank}, title = {Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish Campylomormyrus rhynchophorus (Teleostei: Mormyridae)}, series = {The journal of comparative neurology}, volume = {529}, journal = {The journal of comparative neurology}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9967}, doi = {10.1002/cne.25003}, pages = {1052 -- 1065}, year = {2020}, abstract = {The electric organ of the mormyrid weakly electric fish,Campylomormyrus rhynchophorus(Boulenger, 1898), undergoes changes in both the electric organ discharge (EOD) and the light and electron microscopic morphology as the fish mature from the juvenile to the adult form. Of particular interest was the appearance of papillae, surface specializations of the uninnervated anterior face of the electrocyte, which have been hypothesized to increase the duration of the EOD. In a 24.5 mm long juvenile the adult electric organ (EO) was not yet functional, and the electrocytes lacked papillae. A 40 mm long juvenile, which produced a short biphasic EOD of 1.3 ms duration, shows small papillae (average area 136 mu m(2)). In contrast, the EOD of a 79 mm long juvenile was triphasic. The large increase in duration of the EOD to 23.2 ms was accompanied by a small change in size of the papillae (average area 159 mu m(2)). Similarly, a 150 mm long adult produced a triphasic EOD of comparable duration to the younger stage (24.7 ms) but featured a prominent increase in size of the papillae (average area 402 mu m(2)). Thus, there was no linear correlation between EOD duration and papillary size. The most prominent ultrastructural change was at the level of the myofilaments, which regularly extended into the papillae, only in the oldest specimen-probably serving a supporting function. Physiological mechanisms, like gene expression levels, as demonstrated in someCampylomormyrusspecies, might be more important concerning the duration of the EOD.}, language = {en} }