@misc{ReindlFinchSchaffenrothetal.2018, author = {Reindl, Nicole and Finch, Nicolle L. and Schaffenroth, Veronika and Barstow, Martin A. and Casewell, Sarah L. and Geier, Stephan Alfred and Bertolami Miller, Marcelo Miguel and Taubenberger, Stefan}, title = {Revealing the true nature of Hen2-428}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1129}, issn = {1866-8372}, doi = {10.25932/publishup-45970}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459703}, pages = {9}, year = {2018}, abstract = {The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process.}, language = {en} }