@phdthesis{Schachtschneider2011, author = {Schachtschneider, Reyko}, title = {Error distribution in regional inversions of potential fields from satellite data}, address = {Potsdam}, pages = {118 S.}, year = {2011}, language = {en} } @phdthesis{Sarasit2011, author = {Sarasit, Napaporn}, title = {Algebraic properties of sets of terms}, address = {Potsdam}, pages = {91 S.}, year = {2011}, language = {en} } @phdthesis{Hanisch2011, author = {Hanisch, Florian}, title = {Variational problems on supermanifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59757}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In this thesis, we discuss the formulation of variational problems on supermanifolds. Supermanifolds incorporate bosonic as well as fermionic degrees of freedom. Fermionic fields take values in the odd part of an appropriate Grassmann algebra and are thus showing an anticommutative behaviour. However, a systematic treatment of these Grassmann parameters requires a description of spaces as functors, e.g. from the category of Grassmann algberas into the category of sets (or topological spaces, manifolds). After an introduction to the general ideas of this approach, we use it to give a description of the resulting supermanifolds of fields/maps. We show that each map is uniquely characterized by a family of differential operators of appropriate order. Moreover, we demonstrate that each of this maps is uniquely characterized by its component fields, i.e. by the coefficients in a Taylor expansion w.r.t. the odd coordinates. In general, the component fields are only locally defined. We present a way how to circumvent this limitation. In fact, by enlarging the supermanifold in question, we show that it is possible to work with globally defined components. We eventually use this formalism to study variational problems. More precisely, we study a super version of the geodesic and a generalization of harmonic maps to supermanifolds. Equations of motion are derived from an energy functional and we show how to decompose them into components. Finally, in special cases, we can prove the existence of critical points by reducing the problem to equations from ordinary geometric analysis. After solving these component equations, it is possible to show that their solutions give rise to critical points in the functor spaces of fields.}, language = {en} }