@phdthesis{Afifi2023, author = {Afifi, Haitham}, title = {Wireless In-Network Processing for Multimedia Applications}, doi = {10.25932/publishup-60437}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604371}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 233}, year = {2023}, abstract = {With the recent growth of sensors, cloud computing handles the data processing of many applications. Processing some of this data on the cloud raises, however, many concerns regarding, e.g., privacy, latency, or single points of failure. Alternatively, thanks to the development of embedded systems, smart wireless devices can share their computation capacity, creating a local wireless cloud for in-network processing. In this context, the processing of an application is divided into smaller jobs so that a device can run one or more jobs. The contribution of this thesis to this scenario is divided into three parts. In part one, I focus on wireless aspects, such as power control and interference management, for deciding which jobs to run on which node and how to route data between nodes. Hence, I formulate optimization problems and develop heuristic and meta-heuristic algorithms to allocate wireless and computation resources. Additionally, to deal with multiple applications competing for these resources, I develop a reinforcement learning (RL) admission controller to decide which application should be admitted. Next, I look into acoustic applications to improve wireless throughput by using microphone clock synchronization to synchronize wireless transmissions. In the second part, I jointly work with colleagues from the acoustic processing field to optimize both network and application (i.e., acoustic) qualities. My contribution focuses on the network part, where I study the relation between acoustic and network qualities when selecting a subset of microphones for collecting audio data or selecting a subset of optional jobs for processing these data; too many microphones or too many jobs can lessen quality by unnecessary delays. Hence, I develop RL solutions to select the subset of microphones under network constraints when the speaker is moving while still providing good acoustic quality. Furthermore, I show that autonomous vehicles carrying microphones improve the acoustic qualities of different applications. Accordingly, I develop RL solutions (single and multi-agent ones) for controlling these vehicles. In the third part, I close the gap between theory and practice. I describe the features of my open-source framework used as a proof of concept for wireless in-network processing. Next, I demonstrate how to run some algorithms developed by colleagues from acoustic processing using my framework. I also use the framework for studying in-network delays (wireless and processing) using different distributions of jobs and network topologies.}, language = {en} } @phdthesis{AlhosseiniAlmodarresiYasin2024, author = {Alhosseini Almodarresi Yasin, Seyed Ali}, title = {Classification, prediction and evaluation of graph neural networks on online social media platforms}, doi = {10.25932/publishup-62642}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626421}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 78}, year = {2024}, abstract = {The vast amount of data generated on social media platforms have made them a valuable source of information for businesses, governments and researchers. Social media data can provide insights into user behavior, preferences, and opinions. In this work, we address two important challenges in social media analytics. Predicting user engagement with online content has become a critical task for content creators to increase user engagement and reach larger audiences. Traditional user engagement prediction approaches rely solely on features derived from the user and content. However, a new class of deep learning methods based on graphs captures not only the content features but also the graph structure of social media networks. This thesis proposes a novel Graph Neural Network (GNN) approach to predict user interaction with tweets. The proposed approach combines the features of users, tweets and their engagement graphs. The tweet text features are extracted using pre-trained embeddings from language models, and a GNN layer is used to embed the user in a vector space. The GNN model then combines the features and graph structure to predict user engagement. The proposed approach achieves an accuracy value of 94.22\% in classifying user interactions, including likes, retweets, replies, and quotes. Another major challenge in social media analysis is detecting and classifying social bot accounts. Social bots are automated accounts used to manipulate public opinion by spreading misinformation or generating fake interactions. Detecting social bots is critical to prevent their negative impact on public opinion and trust in social media. In this thesis, we classify social bots on Twitter by applying Graph Neural Networks. The proposed approach uses a combination of both the features of a node and an aggregation of the features of a node's neighborhood to classify social bot accounts. Our final results indicate a 6\% improvement in the area under the curve score in the final predictions through the utilization of GNN. Overall, our work highlights the importance of social media data and the potential of new methods such as GNNs to predict user engagement and detect social bots. These methods have important implications for improving the quality and reliability of information on social media platforms and mitigating the negative impact of social bots on public opinion and discourse.}, language = {en} } @phdthesis{Amirkhanyan2019, author = {Amirkhanyan, Aragats}, title = {Methods and frameworks for GeoSpatioTemporal data analytics}, doi = {10.25932/publishup-44168}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441685}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 133}, year = {2019}, abstract = {In the era of social networks, internet of things and location-based services, many online services produce a huge amount of data that have valuable objective information, such as geographic coordinates and date time. These characteristics (parameters) in the combination with a textual parameter bring the challenge for the discovery of geospatiotemporal knowledge. This challenge requires efficient methods for clustering and pattern mining in spatial, temporal and textual spaces. In this thesis, we address the challenge of providing methods and frameworks for geospatiotemporal data analytics. As an initial step, we address the challenges of geospatial data processing: data gathering, normalization, geolocation, and storage. That initial step is the basement to tackle the next challenge -- geospatial clustering challenge. The first step of this challenge is to design the method for online clustering of georeferenced data. This algorithm can be used as a server-side clustering algorithm for online maps that visualize massive georeferenced data. As the second step, we develop the extension of this method that considers, additionally, the temporal aspect of data. For that, we propose the density and intensity-based geospatiotemporal clustering algorithm with fixed distance and time radius. Each version of the clustering algorithm has its own use case that we show in the thesis. In the next chapter of the thesis, we look at the spatiotemporal analytics from the perspective of the sequential rule mining challenge. We design and implement the framework that transfers data into textual geospatiotemporal data - data that contain geographic coordinates, time and textual parameters. By this way, we address the challenge of applying pattern/rule mining algorithms in geospatiotemporal space. As the applicable use case study, we propose spatiotemporal crime analytics -- discovery spatiotemporal patterns of crimes in publicly available crime data. The second part of the thesis, we dedicate to the application part and use case studies. We design and implement the application that uses the proposed clustering algorithms to discover knowledge in data. Jointly with the application, we propose the use case studies for analysis of georeferenced data in terms of situational and public safety awareness.}, language = {en} } @phdthesis{Bano2023, author = {Bano, Dorina}, title = {Discovering data models from event logs}, doi = {10.25932/publishup-58542}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585427}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 137}, year = {2023}, abstract = {In the last two decades, process mining has developed from a niche discipline to a significant research area with considerable impact on academia and industry. Process mining enables organisations to identify the running business processes from historical execution data. The first requirement of any process mining technique is an event log, an artifact that represents concrete business process executions in the form of sequence of events. These logs can be extracted from the organization's information systems and are used by process experts to retrieve deep insights from the organization's running processes. Considering the events pertaining to such logs, the process models can be automatically discovered and enhanced or annotated with performance-related information. Besides behavioral information, event logs contain domain specific data, albeit implicitly. However, such data are usually overlooked and, thus, not utilized to their full potential. Within the process mining area, we address in this thesis the research gap of discovering, from event logs, the contextual information that cannot be captured by applying existing process mining techniques. Within this research gap, we identify four key problems and tackle them by looking at an event log from different angles. First, we address the problem of deriving an event log in the absence of a proper database access and domain knowledge. The second problem is related to the under-utilization of the implicit domain knowledge present in an event log that can increase the understandability of the discovered process model. Next, there is a lack of a holistic representation of the historical data manipulation at the process model level of abstraction. Last but not least, each process model presumes to be independent of other process models when discovered from an event log, thus, ignoring possible data dependencies between processes within an organization. For each of the problems mentioned above, this thesis proposes a dedicated method. The first method provides a solution to extract an event log only from the transactions performed on the database that are stored in the form of redo logs. The second method deals with discovering the underlying data model that is implicitly embedded in the event log, thus, complementing the discovered process model with important domain knowledge information. The third method captures, on the process model level, how the data affects the running process instances. Lastly, the fourth method is about the discovery of the relations between business processes (i.e., how they exchange data) from a set of event logs and explicitly representing such complex interdependencies in a business process architecture. All the methods introduced in this thesis are implemented as a prototype and their feasibility is proven by being applied on real-life event logs.}, language = {en} } @phdthesis{Bartz2022, author = {Bartz, Christian}, title = {Reducing the annotation burden: deep learning for optical character recognition using less manual annotations}, doi = {10.25932/publishup-55540}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555407}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 183}, year = {2022}, abstract = {Text is a ubiquitous entity in our world and daily life. We encounter it nearly everywhere in shops, on the street, or in our flats. Nowadays, more and more text is contained in digital images. These images are either taken using cameras, e.g., smartphone cameras, or taken using scanning devices such as document scanners. The sheer amount of available data, e.g., millions of images taken by Google Streetview, prohibits manual analysis and metadata extraction. Although much progress was made in the area of optical character recognition (OCR) for printed text in documents, broad areas of OCR are still not fully explored and hold many research challenges. With the mainstream usage of machine learning and especially deep learning, one of the most pressing problems is the availability and acquisition of annotated ground truth for the training of machine learning models because obtaining annotated training data using manual annotation mechanisms is time-consuming and costly. In this thesis, we address of how we can reduce the costs of acquiring ground truth annotations for the application of state-of-the-art machine learning methods to optical character recognition pipelines. To this end, we investigate how we can reduce the annotation cost by using only a fraction of the typically required ground truth annotations, e.g., for scene text recognition systems. We also investigate how we can use synthetic data to reduce the need of manual annotation work, e.g., in the area of document analysis for archival material. In the area of scene text recognition, we have developed a novel end-to-end scene text recognition system that can be trained using inexact supervision and shows competitive/state-of-the-art performance on standard benchmark datasets for scene text recognition. Our method consists of two independent neural networks, combined using spatial transformer networks. Both networks learn together to perform text localization and text recognition at the same time while only using annotations for the recognition task. We apply our model to end-to-end scene text recognition (meaning localization and recognition of words) and pure scene text recognition without any changes in the network architecture. In the second part of this thesis, we introduce novel approaches for using and generating synthetic data to analyze handwriting in archival data. First, we propose a novel preprocessing method to determine whether a given document page contains any handwriting. We propose a novel data synthesis strategy to train a classification model and show that our data synthesis strategy is viable by evaluating the trained model on real images from an archive. Second, we introduce the new analysis task of handwriting classification. Handwriting classification entails classifying a given handwritten word image into classes such as date, word, or number. Such an analysis step allows us to select the best fitting recognition model for subsequent text recognition; it also allows us to reason about the semantic content of a given document page without the need for fine-grained text recognition and further analysis steps, such as Named Entity Recognition. We show that our proposed approaches work well when trained on synthetic data. Further, we propose a flexible metric learning approach to allow zero-shot classification of classes unseen during the network's training. Last, we propose a novel data synthesis algorithm to train off-the-shelf pixel-wise semantic segmentation networks for documents. Our data synthesis pipeline is based on the famous Style-GAN architecture and can synthesize realistic document images with their corresponding segmentation annotation without the need for any annotated data!}, language = {en} } @phdthesis{Batoulis2019, author = {Batoulis, Kimon}, title = {Sound integration of process and decision models}, doi = {10.25932/publishup-43738}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437386}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 155}, year = {2019}, abstract = {Business process management is an established technique for business organizations to manage and support their processes. Those processes are typically represented by graphical models designed with modeling languages, such as the Business Process Model and Notation (BPMN). Since process models do not only serve the purpose of documentation but are also a basis for implementation and automation of the processes, they have to satisfy certain correctness requirements. In this regard, the notion of soundness of workflow nets was developed, that can be applied to BPMN process models in order to verify their correctness. Because the original soundness criteria are very restrictive regarding the behavior of the model, different variants of the soundness notion have been developed for situations in which certain violations are not even harmful. All of those notions do only consider the control-flow structure of a process model, however. This poses a problem, taking into account the fact that with the recent release and the ongoing development of the Decision Model and Notation (DMN) standard, an increasing number of process models are complemented by respective decision models. DMN is a dedicated modeling language for decision logic and separates the concerns of process and decision logic into two different models, process and decision models respectively. Hence, this thesis is concerned with the development of decisionaware soundness notions, i.e., notions of soundness that build upon the original soundness ideas for process models, but additionally take into account complementary decision models. Similar to the various notions of workflow net soundness, this thesis investigates different notions of decision soundness that can be applied depending on the desired degree of restrictiveness. Since decision tables are a standardized means of DMN to represent decision logic, this thesis also puts special focus on decision tables, discussing how they can be translated into an unambiguous format and how their possible output values can be efficiently determined. Moreover, a prototypical implementation is described that supports checking a basic version of decision soundness. The decision soundness notions were also empirically evaluated on models from participants of an online course on process and decision modeling as well as from a process management project of a large insurance company. The evaluation demonstrates that violations of decision soundness indeed occur and can be detected with our approach.}, language = {en} } @phdthesis{Bazhenova2018, author = {Bazhenova, Ekaterina}, title = {Discovery of Decision Models Complementary to Process Models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410020}, school = {Universit{\"a}t Potsdam}, year = {2018}, abstract = {Business process management is an acknowledged asset for running an organization in a productive and sustainable way. One of the most important aspects of business process management, occurring on a daily basis at all levels, is decision making. In recent years, a number of decision management frameworks have appeared in addition to existing business process management systems. More recently, Decision Model and Notation (DMN) was developed by the OMG consortium with the aim of complementing the widely used Business Process Model and Notation (BPMN). One of the reasons for the emergence of DMN is the increasing interest in the evolving paradigm known as the separation of concerns. This paradigm states that modeling decisions complementary to processes reduces process complexity by externalizing decision logic from process models and importing it into a dedicated decision model. Such an approach increases the agility of model design and execution. This provides organizations with the flexibility to adapt to the ever increasing rapid and dynamic changes in the business ecosystem. The research gap, identified by us, is that the separation of concerns, recommended by DMN, prescribes the externalization of the decision logic of process models in one or more separate decision models, but it does not specify this can be achieved. The goal of this thesis is to overcome the presented gap by developing a framework for discovering decision models in a semi-automated way from information about existing process decision making. Thus, in this thesis we develop methodologies to extract decision models from: (1) control flow and data of process models that exist in enterprises; and (2) from event logs recorded by enterprise information systems, encapsulating day-to-day operations. Furthermore, we provide an extension of the methodologies to discover decision models from event logs enriched with fuzziness, a tool dealing with partial knowledge of the process execution information. All the proposed techniques are implemented and evaluated in case studies using real-life and synthetic process models and event logs. The evaluation of these case studies shows that the proposed methodologies provide valid and accurate output decision models that can serve as blueprints for executing decisions complementary to process models. Thus, these methodologies have applicability in the real world and they can be used, for example, for compliance checks, among other uses, which could improve the organization's decision making and hence it's overall performance.}, language = {en} } @phdthesis{Benson2024, author = {Benson, Lawrence}, title = {Efficient state management with persistent memory}, doi = {10.25932/publishup-62563}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-625637}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 124}, year = {2024}, abstract = {Efficiently managing large state is a key challenge for data management systems. Traditionally, state is split into fast but volatile state in memory for processing and persistent but slow state on secondary storage for durability. Persistent memory (PMem), as a new technology in the storage hierarchy, blurs the lines between these states by offering both byte-addressability and low latency like DRAM as well persistence like secondary storage. These characteristics have the potential to cause a major performance shift in database systems. Driven by the potential impact that PMem has on data management systems, in this thesis we explore their use of PMem. We first evaluate the performance of real PMem hardware in the form of Intel Optane in a wide range of setups. To this end, we propose PerMA-Bench, a configurable benchmark framework that allows users to evaluate the performance of customizable database-related PMem access. Based on experimental results obtained with PerMA-Bench, we discuss findings and identify general and implementation-specific aspects that influence PMem performance and should be considered in future work to improve PMem-aware designs. We then propose Viper, a hybrid PMem-DRAM key-value store. Based on PMem-aware access patterns, we show how to leverage PMem and DRAM efficiently to design a key database component. Our evaluation shows that Viper outperforms existing key-value stores by 4-18x for inserts while offering full data persistence and achieving similar or better lookup performance. Next, we show which changes must be made to integrate PMem components into larger systems. By the example of stream processing engines, we highlight limitations of current designs and propose a prototype engine that overcomes these limitations. This allows our prototype to fully leverage PMem's performance for its internal state management. Finally, in light of Optane's discontinuation, we discuss how insights from PMem research can be transferred to future multi-tier memory setups by the example of Compute Express Link (CXL). Overall, we show that PMem offers high performance for state management, bridging the gap between fast but volatile DRAM and persistent but slow secondary storage. Although Optane was discontinued, new memory technologies are continuously emerging in various forms and we outline how novel designs for them can build on insights from existing PMem research.}, language = {en} } @phdthesis{BinTareaf2022, author = {Bin Tareaf, Raad}, title = {Social media based personality prediction models}, doi = {10.25932/publishup-54914}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549142}, school = {Universit{\"a}t Potsdam}, pages = {x, 137}, year = {2022}, abstract = {Individuals have an intrinsic need to express themselves to other humans within a given community by sharing their experiences, thoughts, actions, and opinions. As a means, they mostly prefer to use modern online social media platforms such as Twitter, Facebook, personal blogs, and Reddit. Users of these social networks interact by drafting their own statuses updates, publishing photos, and giving likes leaving a considerable amount of data behind them to be analyzed. Researchers recently started exploring the shared social media data to understand online users better and predict their Big five personality traits: agreeableness, conscientiousness, extraversion, neuroticism, and openness to experience. This thesis intends to investigate the possible relationship between users' Big five personality traits and the published information on their social media profiles. Facebook public data such as linguistic status updates, meta-data of likes objects, profile pictures, emotions, or reactions records were adopted to address the proposed research questions. Several machine learning predictions models were constructed with various experiments to utilize the engineered features correlated with the Big 5 Personality traits. The final predictive performances improved the prediction accuracy compared to state-of-the-art approaches, and the models were evaluated based on established benchmarks in the domain. The research experiments were implemented while ethical and privacy points were concerned. Furthermore, the research aims to raise awareness about privacy between social media users and show what third parties can reveal about users' private traits from what they share and act on different social networking platforms. In the second part of the thesis, the variation in personality development is studied within a cross-platform environment such as Facebook and Twitter platforms. The constructed personality profiles in these social platforms are compared to evaluate the effect of the used platforms on one user's personality development. Likewise, personality continuity and stability analysis are performed using two social media platforms samples. The implemented experiments are based on ten-year longitudinal samples aiming to understand users' long-term personality development and further unlock the potential of cooperation between psychologists and data scientists.}, language = {en} } @phdthesis{Buschmann2018, author = {Buschmann, Stefan}, title = {A software framework for GPU-based geo-temporal visualization techniques}, doi = {10.25932/publishup-44340}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443406}, school = {Universit{\"a}t Potsdam}, pages = {viii, 99}, year = {2018}, abstract = {R{\"a}umlich-zeitliche Daten sind Daten, welche sowohl einen Raum- als auch einen Zeitbezug aufweisen. So k{\"o}nnen beispielsweise Zeitreihen von Geodaten, thematische Karten die sich {\"u}ber die Zeit ver{\"a}ndern, oder Bewegungsaufzeichnungen von sich bewegenden Objekten als r{\"a}umlich-zeitliche Daten aufgefasst werden. In der heutigen automatisierten Welt gibt es eine wachsende Anzahl von Datenquellen, die best{\"a}ndig r{\"a}umlich-zeitliche Daten generieren. Hierzu geh{\"o}ren beispielsweise Verkehrs{\"u}berwachungssysteme, die Bewegungsdaten von Menschen oder Fahrzeugen aufzeichnen, Fernerkundungssysteme, welche regelm{\"a}ßig unsere Umgebung scannen und digitale Abbilder wie z.B. Stadt- und Landschaftsmodelle erzeugen, sowie Sensornetzwerke in unterschiedlichsten Anwendungsgebieten, wie z.B. der Logistik, der Verhaltensforschung von Tieren, oder der Klimaforschung. Zur Analyse r{\"a}umlich-zeitlicher Daten werden neben der automatischen Analyse mittels statistischer Methoden und Data-Mining auch explorative Methoden angewendet, welche auf der interaktiven Visualisierung der Daten beruhen. Diese Methode der Analyse basiert darauf, dass Anwender in Form interaktiver Visualisierung die Daten explorieren k{\"o}nnen, wodurch die menschliche Wahrnehmung sowie das Wissen der User genutzt werden, um Muster zu erkennen und dadurch einen Einblick in die Daten zu erlangen. Diese Arbeit beschreibt ein Software-Framework f{\"u}r die Visualisierung r{\"a}umlich-zeitlicher Daten, welches GPU-basierte Techniken beinhaltet, um eine interaktive Visualisierung und Exploration großer r{\"a}umlich-zeitlicher Datens{\"a}tze zu erm{\"o}glichen. Die entwickelten Techniken umfassen Datenhaltung, Prozessierung und Rendering und erm{\"o}glichen es, große Datenmengen in Echtzeit zu prozessieren und zu visualisieren. Die Hauptbeitr{\"a}ge der Arbeit umfassen: - Konzept und Implementierung einer GPU-zentrierten Visualisierungspipeline. Die beschriebenen Techniken basieren auf dem Konzept einer GPU-zentrierten Visualisierungspipeline, in welcher alle Stufen -- Prozessierung,Mapping, Rendering -- auf der GPU ausgef{\"u}hrt werden. Bei diesem Konzept werden die r{\"a}umlich-zeitlichen Daten direkt im GPU-Speicher abgelegt. W{\"a}hrend des Rendering-Prozesses werden dann mittels Shader-Programmen die Daten prozessiert, gefiltert, ein Mapping auf visuelle Attribute vorgenommen, und schließlich die Geometrien f{\"u}r die Visualisierung erzeugt. Datenprozessierung, Filtering und Mapping k{\"o}nnen daher in Echtzeit ausgef{\"u}hrt werden. Dies erm{\"o}glicht es Usern, die Mapping-Parameter sowie den gesamten Visualisierungsprozess interaktiv zu steuern und zu kontrollieren. - Interaktive Visualisierung attributierter 3D-Trajektorien. Es wurde eine Visualisierungsmethode f{\"u}r die interaktive Exploration einer großen Anzahl von 3D Bewegungstrajektorien entwickelt. Die Trajektorien werden dabei innerhalb einer virtuellen geographischen Umgebung in Form von einfachen Geometrien, wie Linien, B{\"a}ndern, Kugeln oder R{\"o}hren dargestellt. Durch interaktives Mapping k{\"o}nnen Attributwerte der Trajektorien oder einzelner Messpunkte auf visuelle Eigenschaften abgebildet werden. Hierzu stehen Form, H{\"o}he, Gr{\"o}ße, Farbe, Textur, sowie Animation zur Verf{\"u}gung. Mithilfe dieses dynamischen Mappings wurden außerdem verschiedene Visualisierungsmethoden implementiert, wie z.B. eine Focus+Context-Visualisierung von Trajektorien mithilfe von interaktiven Dichtekarten, sowie einer Space-Time-Cube-Visualisierung zur Darstellung des zeitlichen Ablaufs einzelner Bewegungen. - Interaktive Visualisierung geographischer Netzwerke. Es wurde eine Visualisierungsmethode zur interaktiven Exploration geo-referenzierter Netzwerke entwickelt, welche die Visualisierung von Netzwerken mit einer großen Anzahl von Knoten und Kanten erm{\"o}glicht. Um die Analyse von Netzwerken verschiedener Gr{\"o}ßen und in unterschiedlichen Kontexten zu erm{\"o}glichen, stehen mehrere virtuelle geographische Umgebungen zur Verf{\"u}gung, wie bspw. ein virtueller 3D-Globus, als auch 2D-Karten mit unterschiedlichen geographischen Projektionen. Zur interaktiven Analyse dieser Netzwerke stehen interaktive Tools wie Filterung, Mapping und Selektion zur Verf{\"u}gung. Des weiteren wurden Visualisierungsmethoden f{\"u}r verschiedene Arten von Netzwerken, wie z.B. 3D-Netzwerke und zeitlich ver{\"a}nderliche Netzwerke, implementiert. Zur Demonstration des Konzeptes wurden interaktive Tools f{\"u}r zwei unterschiedliche Anwendungsf{\"a}lle entwickelt. Das erste beinhaltet die Visualisierung attributierter 3D-Trajektorien, welche die Bewegungen von Flugzeugen um einen Flughafen beschreiben. Es erm{\"o}glicht Nutzern, die Trajektorien von ankommenden und startenden Flugzeugen {\"u}ber den Zeitraum eines Monats interaktiv zu explorieren und zu analysieren. Durch Verwendung der interaktiven Visualisierungsmethoden f{\"u}r 3D-Trajektorien und interaktiven Dichtekarten k{\"o}nnen Einblicke in die Daten gewonnen werden, wie beispielsweise h{\"a}ufig genutzte Flugkorridore, typische sowie untypische Bewegungsmuster, oder ungew{\"o}hnliche Vorkommnisse wie Fehlanfl{\"u}ge. Der zweite Anwendungsfall beinhaltet die Visualisierung von Klimanetzwerken, welche geographischen Netzwerken in der Klimaforschung darstellen. Klimanetzwerke repr{\"a}sentieren die Dynamiken im Klimasystem durch eine Netzwerkstruktur, die die statistische Beziehungen zwischen Orten beschreiben. Das entwickelte Tool erm{\"o}glicht es Analysten, diese großen Netzwerke interaktiv zu explorieren und dadurch die Struktur des Netzwerks zu analysieren und mit den geographischen Daten in Beziehung zu setzen. Interaktive Filterung und Selektion erm{\"o}glichen es, Muster in den Daten zu identifizieren, und so bspw. Cluster in der Netzwerkstruktur oder Str{\"o}mungsmuster zu erkennen.}, language = {en} } @phdthesis{Che2017, author = {Che, Xiaoyin}, title = {E-lecture material enhancement based on automatic multimedia analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408224}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 148}, year = {2017}, abstract = {In this era of high-speed informatization and globalization, online education is no longer an exquisite concept in the ivory tower, but a rapidly developing industry closely relevant to people's daily lives. Numerous lectures are recorded in form of multimedia data, uploaded to the Internet and made publicly accessible from anywhere in this world. These lectures are generally addressed as e-lectures. In recent year, a new popular form of e-lectures, the Massive Open Online Courses (MOOCs), boosts the growth of online education industry and somehow turns "learning online" into a fashion. As an e-learning provider, besides to keep improving the quality of e-lecture content, to provide better learning environment for online learners is also a highly important task. This task can be preceded in various ways, and one of them is to enhance and upgrade the learning materials provided: e-lectures could be more than videos. Moreover, this process of enhancement or upgrading should be done automatically, without giving extra burdens to the lecturers or teaching teams, and this is the aim of this thesis. The first part of this thesis is an integrated framework of multi-lingual subtitles production, which can help online learners penetrate the language barrier. The framework consists of Automatic Speech Recognition (ASR), Sentence Boundary Detection (SBD) and Machine Translation (MT), among which the proposed SBD solution is major technical contribution, building on Deep Neural Network (DNN) and Word Vector (WV) and achieving state-of-the-art performance. Besides, a quantitative evaluation with dozens of volunteers is also introduced to measure how these auto-generated subtitles could actually help in context of e-lectures. Secondly, a technical solution "TOG" (Tree-Structure Outline Generation) is proposed to extract textual content from the displaying slides recorded in video and re-organize them into a hierarchical lecture outline, which may serve in multiple functions, such like preview, navigation and retrieval. TOG runs adaptively and can be roughly divided into intra-slide and inter-slides phases. Table detection and lecture video segmentation can be implemented as sub- or post-application in these two phases respectively. Evaluation on diverse e-lectures shows that all the outlines, tables and segments achieved are trustworthily accurate. Based on the subtitles and outlines previously created, lecture videos can be further split into sentence units and slide-based segment units. A lecture highlighting process is further applied on these units, in order to capture and mark the most important parts within the corresponding lecture, just as what people do with a pen when reading paper books. Sentence-level highlighting depends on the acoustic analysis on the audio track, while segment-level highlighting focuses on exploring clues from the statistical information of related transcripts and slide content. Both objective and subjective evaluations prove that the proposed lecture highlighting solution is with decent precision and welcomed by users. All above enhanced e-lecture materials have been already implemented in actual use or made available for implementation by convenient interfaces.}, language = {en} } @phdthesis{Cheng2018, author = {Cheng, Lung-Pan}, title = {Human actuation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418371}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 85}, year = {2018}, abstract = {Ever since the conception of the virtual reality headset in 1968, many researchers have argued that the next step in virtual reality is to allow users to not only see and hear, but also feel virtual worlds. One approach is to use mechanical equipment to provide haptic feedback, e.g., robotic arms, exoskeletons and motion platforms. However, the size and the weight of such mechanical equipment tends to be proportional to its target's size and weight, i.e., providing human-scale haptic feedback requires human-scale equipment, often restricting them to arcades and lab environments. The key idea behind this dissertation is to bypass mechanical equipment by instead leveraging human muscle power. We thus create software systems that orchestrate humans in doing such mechanical labor—this is what we call human actuation. A potential benefit of such systems is that humans are more generic, flexible, and versatile than machines. This brings a wide range of haptic feedback to modern virtual reality systems. We start with a proof-of-concept system—Haptic Turk, focusing on delivering motion experiences just like a motion platform. All Haptic Turk setups consist of a user who is supported by one or more human actuators. The user enjoys an interactive motion simulation such as a hang glider experience, but the motion is generated by those human actuators who manually lift, tilt, and push the user's limbs or torso. To get the timing and force right, timed motion instructions in a format familiar from rhythm games are generated by the system. Next, we extend the concept of human actuation from 3-DoF to 6-DoF virtual reality where users have the freedom to walk around. TurkDeck tackles this problem by orchestrating a group of human actuators to reconfigure a set of passive props on the fly while the user is progressing in the virtual environment. TurkDeck schedules human actuators by their distances from the user, and instructs them to reconfigure the props to the right place on the right time using laser projection and voice output. Our studies in Haptic Turk and TurkDeck showed that human actuators enjoyed the experience but not as much as users. To eliminate the need of dedicated human actuators, Mutual Turk makes everyone a user by exchanging mechanical actuation between two or more users. Mutual Turk's main functionality is that it orchestrates the users so as to actuate props at just the right moment and with just the right force to produce the correct feedback in each other's experience. Finally, we further eliminate the need of another user, making human actuation applicable to single-user experiences. iTurk makes the user constantly reconfigure and animate otherwise passive props. This allows iTurk to provide virtual worlds with constantly varying or even animated haptic effects, even though the only animate entity present in the system is the user. Our demo experience features one example each of iTurk's two main types of props, i.e., reconfigurable props (the foldable board from TurkDeck) and animated props (the pendulum). We conclude this dissertation by summarizing the findings of our explorations and pointing out future directions. We discuss the development of human actuation compare to traditional machine actuation, the possibility of combining human and machine actuators and interaction models that involve more human actuators.}, language = {en} } @phdthesis{ChujfiLaRoche2020, author = {Chujfi-La-Roche, Salim}, title = {Human Cognition and natural Language Processing in the Digitally Mediated Environment}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2020}, abstract = {Organizations continue to assemble and rely upon teams of remote workers as an essential element of their business strategy; however, knowledge processing is particular difficult in such isolated, largely digitally mediated settings. The great challenge for a knowledge-based organization lies not in how individuals should interact using technology but in how to achieve effective cooperation and knowledge exchange. Currently more attention has been paid to technology and the difficulties machines have processing natural language and less to studies of the human aspect—the influence of our own individual cognitive abilities and preferences on the processing of information when interacting online. This thesis draws on four scientific domains involved in the process of interpreting and processing massive, unstructured data—knowledge management, linguistics, cognitive science, and artificial intelligence—to build a model that offers a reliable way to address the ambiguous nature of language and improve workers' digitally mediated interactions. Human communication can be discouragingly imprecise and is characterized by a strong linguistic ambiguity; this represents an enormous challenge for the computer analysis of natural language. In this thesis, I propose and develop a new data interpretation layer for the processing of natural language based on the human cognitive preferences of the conversants themselves. Such a semantic analysis merges information derived both from the content and from the associated social and individual contexts, as well as the social dynamics that emerge online. At the same time, assessment taxonomies are used to analyze online comportment at the individual and community level in order to successfully identify characteristics leading to greater effectiveness of communication. Measurement patterns for identifying effective methods of individual interaction with regard to individual cognitive and learning preferences are also evaluated; a novel Cyber-Cognitive Identity (CCI)—a perceptual profile of an individual's cognitive and learning styles—is proposed. Accommodation of such cognitive preferences can greatly facilitate knowledge management in the geographically dispersed and collaborative digital environment. Use of the CCI is proposed for cognitively labeled Latent Dirichlet Allocation (CLLDA), a novel method for automatically labeling and clustering knowledge that does not rely solely on probabilistic methods, but rather on a fusion of machine learning algorithms and the cognitive identities of the associated individuals interacting in a digitally mediated environment. Advantages include: a greater perspicuity of dynamic and meaningful cognitive rules leading to greater tagging accuracy and a higher content portability at the sentence, document, and corpus level with respect to digital communication.}, language = {en} } @phdthesis{Doskoč2023, author = {Doskoč, Vanja}, title = {Mapping restrictions in behaviourally correct learning}, doi = {10.25932/publishup-59311}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-593110}, school = {Universit{\"a}t Potsdam}, pages = {ix, 74}, year = {2023}, abstract = {In this thesis, we investigate language learning in the formalisation of Gold [Gol67]. Here, a learner, being successively presented all information of a target language, conjectures which language it believes to be shown. Once these hypotheses converge syntactically to a correct explanation of the target language, the learning is considered successful. Fittingly, this is termed explanatory learning. To model learning strategies, we impose restrictions on the hypotheses made, for example requiring the conjectures to follow a monotonic behaviour. This way, we can study the impact a certain restriction has on learning. Recently, the literature shifted towards map charting. Here, various seemingly unrelated restrictions are contrasted, unveiling interesting relations between them. The results are then depicted in maps. For explanatory learning, the literature already provides maps of common restrictions for various forms of data presentation. In the case of behaviourally correct learning, where the learners are required to converge semantically instead of syntactically, the same restrictions as in explanatory learning have been investigated. However, a similarly complete picture regarding their interaction has not been presented yet. In this thesis, we transfer the map charting approach to behaviourally correct learning. In particular, we complete the partial results from the literature for many well-studied restrictions and provide full maps for behaviourally correct learning with different types of data presentation. We also study properties of learners assessed important in the literature. We are interested whether learners are consistent, that is, whether their conjectures include the data they are built on. While learners cannot be assumed consistent in explanatory learning, the opposite is the case in behaviourally correct learning. Even further, it is known that learners following different restrictions may be assumed consistent. We contribute to the literature by showing that this is the case for all studied restrictions. We also investigate mathematically interesting properties of learners. In particular, we are interested in whether learning under a given restriction may be done with strongly Bc-locking learners. Such learners are of particular value as they allow to apply simulation arguments when, for example, comparing two learning paradigms to each other. The literature gives a rich ground on when learners may be assumed strongly Bc-locking, which we complete for all studied restrictions.}, language = {en} } @phdthesis{Draisbach2022, author = {Draisbach, Uwe}, title = {Efficient duplicate detection and the impact of transitivity}, doi = {10.25932/publishup-57214}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572140}, school = {Universit{\"a}t Potsdam}, pages = {x, 150}, year = {2022}, abstract = {Duplicate detection describes the process of finding multiple representations of the same real-world entity in the absence of a unique identifier, and has many application areas, such as customer relationship management, genealogy and social sciences, or online shopping. Due to the increasing amount of data in recent years, the problem has become even more challenging on the one hand, but has led to a renaissance in duplicate detection research on the other hand. This thesis examines the effects and opportunities of transitive relationships on the duplicate detection process. Transitivity implies that if record pairs ⟨ri,rj⟩ and ⟨rj,rk⟩ are classified as duplicates, then also record pair ⟨ri,rk⟩ has to be a duplicate. However, this reasoning might contradict with the pairwise classification, which is usually based on the similarity of objects. An essential property of similarity, in contrast to equivalence, is that similarity is not necessarily transitive. First, we experimentally evaluate the effect of an increasing data volume on the threshold selection to classify whether a record pair is a duplicate or non-duplicate. Our experiments show that independently of the pair selection algorithm and the used similarity measure, selecting a suitable threshold becomes more difficult with an increasing number of records due to an increased probability of adding a false duplicate to an existing cluster. Thus, the best threshold changes with the dataset size, and a good threshold for a small (possibly sampled) dataset is not necessarily a good threshold for a larger (possibly complete) dataset. As data grows over time, earlier selected thresholds are no longer a suitable choice, and the problem becomes worse for datasets with larger clusters. Second, we present with the Duplicate Count Strategy (DCS) and its enhancement DCS++ two alternatives to the standard Sorted Neighborhood Method (SNM) for the selection of candidate record pairs. DCS adapts SNMs window size based on the number of detected duplicates and DCS++ uses transitive dependencies to save complex comparisons for finding duplicates in larger clusters. We prove that with a proper (domain- and data-independent!) threshold, DCS++ is more efficient than SNM without loss of effectiveness. Third, we tackle the problem of contradicting pairwise classifications. Usually, the transitive closure is used for pairwise classifications to obtain a transitively closed result set. However, the transitive closure disregards negative classifications. We present three new and several existing clustering algorithms and experimentally evaluate them on various datasets and under various algorithm configurations. The results show that the commonly used transitive closure is inferior to most other clustering algorithms, especially for the precision of results. In scenarios with larger clusters, our proposed EMCC algorithm is, together with Markov Clustering, the best performing clustering approach for duplicate detection, although its runtime is longer than Markov Clustering due to the subexponential time complexity. EMCC especially outperforms Markov Clustering regarding the precision of the results and additionally has the advantage that it can also be used in scenarios where edge weights are not available.}, language = {en} } @phdthesis{Dyck2020, author = {Dyck, Johannes}, title = {Verification of graph transformation systems with k-inductive invariants}, doi = {10.25932/publishup-44274}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442742}, school = {Universit{\"a}t Potsdam}, pages = {X, 364}, year = {2020}, abstract = {With rising complexity of today's software and hardware systems and the hypothesized increase in autonomous, intelligent, and self-* systems, developing correct systems remains an important challenge. Testing, although an important part of the development and maintainance process, cannot usually establish the definite correctness of a software or hardware system - especially when systems have arbitrarily large or infinite state spaces or an infinite number of initial states. This is where formal verification comes in: given a representation of the system in question in a formal framework, verification approaches and tools can be used to establish the system's adherence to its similarly formalized specification, and to complement testing. One such formal framework is the field of graphs and graph transformation systems. Both are powerful formalisms with well-established foundations and ongoing research that can be used to describe complex hardware or software systems with varying degrees of abstraction. Since their inception in the 1970s, graph transformation systems have continuously evolved; related research spans extensions of expressive power, graph algorithms, and their implementation, application scenarios, or verification approaches, to name just a few topics. This thesis focuses on a verification approach for graph transformation systems called k-inductive invariant checking, which is an extension of previous work on 1-inductive invariant checking. Instead of exhaustively computing a system's state space, which is a common approach in model checking, 1-inductive invariant checking symbolically analyzes graph transformation rules - i.e. system behavior - in order to draw conclusions with respect to the validity of graph constraints in the system's state space. The approach is based on an inductive argument: if a system's initial state satisfies a graph constraint and if all rules preserve that constraint's validity, we can conclude the constraint's validity in the system's entire state space - without having to compute it. However, inductive invariant checking also comes with a specific drawback: the locality of graph transformation rules leads to a lack of context information during the symbolic analysis of potential rule applications. This thesis argues that this lack of context can be partly addressed by using k-induction instead of 1-induction. A k-inductive invariant is a graph constraint whose validity in a path of k-1 rule applications implies its validity after any subsequent rule application - as opposed to a 1-inductive invariant where only one rule application is taken into account. Considering a path of transformations then accumulates more context of the graph rules' applications. As such, this thesis extends existing research and implementation on 1-inductive invariant checking for graph transformation systems to k-induction. In addition, it proposes a technique to perform the base case of the inductive argument in a symbolic fashion, which allows verification of systems with an infinite set of initial states. Both k-inductive invariant checking and its base case are described in formal terms. Based on that, this thesis formulates theorems and constructions to apply this general verification approach for typed graph transformation systems and nested graph constraints - and to formally prove the approach's correctness. Since unrestricted graph constraints may lead to non-termination or impracticably high execution times given a hypothetical implementation, this thesis also presents a restricted verification approach, which limits the form of graph transformation systems and graph constraints. It is formalized, proven correct, and its procedures terminate by construction. This restricted approach has been implemented in an automated tool and has been evaluated with respect to its applicability to test cases, its performance, and its degree of completeness.}, language = {en} } @phdthesis{Elsaid2022, author = {Elsaid, Mohamed Esameldin Mohamed}, title = {Virtual machines live migration cost modeling and prediction}, doi = {10.25932/publishup-54001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-540013}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 107}, year = {2022}, abstract = {Dynamic resource management is an essential requirement for private and public cloud computing environments. With dynamic resource management, the physical resources assignment to the cloud virtual resources depends on the actual need of the applications or the running services, which enhances the cloud physical resources utilization and reduces the offered services cost. In addition, the virtual resources can be moved across different physical resources in the cloud environment without an obvious impact on the running applications or services production. This means that the availability of the running services and applications in the cloud is independent on the hardware resources including the servers, switches and storage failures. This increases the reliability of using cloud services compared to the classical data-centers environments. In this thesis we briefly discuss the dynamic resource management topic and then deeply focus on live migration as the definition of the compute resource dynamic management. Live migration is a commonly used and an essential feature in cloud and virtual data-centers environments. Cloud computing load balance, power saving and fault tolerance features are all dependent on live migration to optimize the virtual and physical resources usage. As we will discuss in this thesis, live migration shows many benefits to cloud and virtual data-centers environments, however the cost of live migration can not be ignored. Live migration cost includes the migration time, downtime, network overhead, power consumption increases and CPU overhead. IT admins run virtual machines live migrations without an idea about the migration cost. So, resources bottlenecks, higher migration cost and migration failures might happen. The first problem that we discuss in this thesis is how to model the cost of the virtual machines live migration. Secondly, we investigate how to make use of machine learning techniques to help the cloud admins getting an estimation of this cost before initiating the migration for one of multiple virtual machines. Also, we discuss the optimal timing for a specific virtual machine before live migration to another server. Finally, we propose practical solutions that can be used by the cloud admins to be integrated with the cloud administration portals to answer the raised research questions above. Our research methodology to achieve the project objectives is to propose empirical models based on using VMware test-beds with different benchmarks tools. Then we make use of the machine learning techniques to propose a prediction approach for virtual machines live migration cost. Timing optimization for live migration is also proposed in this thesis based on using the cost prediction and data-centers network utilization prediction. Live migration with persistent memory clusters is also discussed at the end of the thesis. The cost prediction and timing optimization techniques proposed in this thesis could be practically integrated with VMware vSphere cluster portal such that the IT admins can now use the cost prediction feature and timing optimization option before proceeding with a virtual machine live migration. Testing results show that our proposed approach for VMs live migration cost prediction shows acceptable results with less than 20\% prediction error and can be easily implemented and integrated with VMware vSphere as an example of a commonly used resource management portal for virtual data-centers and private cloud environments. The results show that using our proposed VMs migration timing optimization technique also could save up to 51\% of migration time of the VMs migration time for memory intensive workloads and up to 27\% of the migration time for network intensive workloads. This timing optimization technique can be useful for network admins to save migration time with utilizing higher network rate and higher probability of success. At the end of this thesis, we discuss the persistent memory technology as a new trend in servers memory technology. Persistent memory modes of operation and configurations are discussed in detail to explain how live migration works between servers with different memory configuration set up. Then, we build a VMware cluster with persistent memory inside server and also with DRAM only servers to show the live migration cost difference between the VMs with DRAM only versus the VMs with persistent memory inside.}, language = {en} } @phdthesis{FreitasdaCruz2021, author = {Freitas da Cruz, Harry}, title = {Standardizing clinical predictive modeling}, doi = {10.25932/publishup-51496}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514960}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 133}, year = {2021}, abstract = {An ever-increasing number of prediction models is published every year in different medical specialties. Prognostic or diagnostic in nature, these models support medical decision making by utilizing one or more items of patient data to predict outcomes of interest, such as mortality or disease progression. While different computer tools exist that support clinical predictive modeling, I observed that the state of the art is lacking in the extent to which the needs of research clinicians are addressed. When it comes to model development, current support tools either 1) target specialist data engineers, requiring advanced coding skills, or 2) cater to a general-purpose audience, therefore not addressing the specific needs of clinical researchers. Furthermore, barriers to data access across institutional silos, cumbersome model reproducibility and extended experiment-to-result times significantly hampers validation of existing models. Similarly, without access to interpretable explanations, which allow a given model to be fully scrutinized, acceptance of machine learning approaches will remain limited. Adequate tool support, i.e., a software artifact more targeted at the needs of clinical modeling, can help mitigate the challenges identified with respect to model development, validation and interpretation. To this end, I conducted interviews with modeling practitioners in health care to better understand the modeling process itself and ascertain in what aspects adequate tool support could advance the state of the art. The functional and non-functional requirements identified served as the foundation for a software artifact that can be used for modeling outcome and risk prediction in health research. To establish the appropriateness of this approach, I implemented a use case study in the Nephrology domain for acute kidney injury, which was validated in two different hospitals. Furthermore, I conducted user evaluation to ascertain whether such an approach provides benefits compared to the state of the art and the extent to which clinical practitioners could benefit from it. Finally, when updating models for external validation, practitioners need to apply feature selection approaches to pinpoint the most relevant features, since electronic health records tend to contain several candidate predictors. Building upon interpretability methods, I developed an explanation-driven recursive feature elimination approach. This method was comprehensively evaluated against state-of-the art feature selection methods. Therefore, this thesis' main contributions are three-fold, namely, 1) designing and developing a software artifact tailored to the specific needs of the clinical modeling domain, 2) demonstrating its application in a concrete case in the Nephrology context and 3) development and evaluation of a new feature selection approach applicable in a validation context that builds upon interpretability methods. In conclusion, I argue that appropriate tooling, which relies on standardization and parametrization, can support rapid model prototyping and collaboration between clinicians and data scientists in clinical predictive modeling.}, language = {en} } @phdthesis{Gawron2019, author = {Gawron, Marian}, title = {Towards automated advanced vulnerability analysis}, doi = {10.25932/publishup-42635}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426352}, school = {Universit{\"a}t Potsdam}, pages = {149}, year = {2019}, abstract = {The identification of vulnerabilities in IT infrastructures is a crucial problem in enhancing the security, because many incidents resulted from already known vulnerabilities, which could have been resolved. Thus, the initial identification of vulnerabilities has to be used to directly resolve the related weaknesses and mitigate attack possibilities. The nature of vulnerability information requires a collection and normalization of the information prior to any utilization, because the information is widely distributed in different sources with their unique formats. Therefore, the comprehensive vulnerability model was defined and different sources have been integrated into one database. Furthermore, different analytic approaches have been designed and implemented into the HPI-VDB, which directly benefit from the comprehensive vulnerability model and especially from the logical preconditions and postconditions. Firstly, different approaches to detect vulnerabilities in both IT systems of average users and corporate networks of large companies are presented. Therefore, the approaches mainly focus on the identification of all installed applications, since it is a fundamental step in the detection. This detection is realized differently depending on the target use-case. Thus, the experience of the user, as well as the layout and possibilities of the target infrastructure are considered. Furthermore, a passive lightweight detection approach was invented that utilizes existing information on corporate networks to identify applications. In addition, two different approaches to represent the results using attack graphs are illustrated in the comparison between traditional attack graphs and a simplistic graph version, which was integrated into the database as well. The implementation of those use-cases for vulnerability information especially considers the usability. Beside the analytic approaches, the high data quality of the vulnerability information had to be achieved and guaranteed. The different problems of receiving incomplete or unreliable information for the vulnerabilities are addressed with different correction mechanisms. The corrections can be carried out with correlation or lookup mechanisms in reliable sources or identifier dictionaries. Furthermore, a machine learning based verification procedure was presented that allows an automatic derivation of important characteristics from the textual description of the vulnerabilities.}, language = {en} } @phdthesis{Ghahremani2024, author = {Ghahremani, Sona}, title = {Incremental self-adaptation of dynamic architectures attaining optimality and scalability}, doi = {10.25932/publishup-62423}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624232}, school = {Universit{\"a}t Potsdam}, pages = {xii, 285}, year = {2024}, abstract = {The landscape of software self-adaptation is shaped in accordance with the need to cost-effectively achieve and maintain (software) quality at runtime and in the face of dynamic operation conditions. Optimization-based solutions perform an exhaustive search in the adaptation space, thus they may provide quality guarantees. However, these solutions render the attainment of optimal adaptation plans time-intensive, thereby hindering scalability. Conversely, deterministic rule-based solutions yield only sub-optimal adaptation decisions, as they are typically bound by design-time assumptions, yet they offer efficient processing and implementation, readability, expressivity of individual rules supporting early verification. Addressing the quality-cost trade-of requires solutions that simultaneously exhibit the scalability and cost-efficiency of rulebased policy formalism and the optimality of optimization-based policy formalism as explicit artifacts for adaptation. Utility functions, i.e., high-level specifications that capture system objectives, support the explicit treatment of quality-cost trade-off. Nevertheless, non-linearities, complex dynamic architectures, black-box models, and runtime uncertainty that makes the prior knowledge obsolete are a few of the sources of uncertainty and subjectivity that render the elicitation of utility non-trivial. This thesis proposes a twofold solution for incremental self-adaptation of dynamic architectures. First, we introduce Venus, a solution that combines in its design a ruleand an optimization-based formalism enabling optimal and scalable adaptation of dynamic architectures. Venus incorporates rule-like constructs and relies on utility theory for decision-making. Using a graph-based representation of the architecture, Venus captures rules as graph patterns that represent architectural fragments, thus enabling runtime extensibility and, in turn, support for dynamic architectures; the architecture is evaluated by assigning utility values to fragments; pattern-based definition of rules and utility enables incremental computation of changes on the utility that result from rule executions, rather than evaluating the complete architecture, which supports scalability. Second, we introduce HypeZon, a hybrid solution for runtime coordination of multiple off-the-shelf adaptation policies, which typically offer only partial satisfaction of the quality and cost requirements. Realized based on meta-self-aware architectures, HypeZon complements Venus by re-using existing policies at runtime for balancing the quality-cost trade-off. The twofold solution of this thesis is integrated in an adaptation engine that leverages state- and event-based principles for incremental execution, therefore, is scalable for large and dynamic software architectures with growing size and complexity. The utility elicitation challenge is resolved by defining a methodology to train utility-change prediction models. The thesis addresses the quality-cost trade-off in adaptation of dynamic software architectures via design-time combination (Venus) and runtime coordination (HypeZon) of rule- and optimization-based policy formalisms, while offering supporting mechanisms for optimal, cost-effective, scalable, and robust adaptation. The solutions are evaluated according to a methodology that is obtained based on our systematic literature review of evaluation in self-healing systems; the applicability and effectiveness of the contributions are demonstrated to go beyond the state-of-the-art in coverage of a wide spectrum of the problem space for software self-adaptation.}, language = {en} } @phdthesis{Gross2019, author = {Groß, Sascha}, title = {Detecting and mitigating information flow threats in Android OS}, school = {Universit{\"a}t Potsdam}, pages = {93}, year = {2019}, language = {en} } @phdthesis{Gruener2022, author = {Gr{\"u}ner, Andreas}, title = {Towards practical and trust-enhancing attribute aggregation for self-sovereign identity}, doi = {10.25932/publishup-56745}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567450}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 175}, year = {2022}, abstract = {Identity management is at the forefront of applications' security posture. It separates the unauthorised user from the legitimate individual. Identity management models have evolved from the isolated to the centralised paradigm and identity federations. Within this advancement, the identity provider emerged as a trusted third party that holds a powerful position. Allen postulated the novel self-sovereign identity paradigm to establish a new balance. Thus, extensive research is required to comprehend its virtues and limitations. Analysing the new paradigm, initially, we investigate the blockchain-based self-sovereign identity concept structurally. Moreover, we examine trust requirements in this context by reference to patterns. These shapes comprise major entities linked by a decentralised identity provider. By comparison to the traditional models, we conclude that trust in credential management and authentication is removed. Trust-enhancing attribute aggregation based on multiple attribute providers provokes a further trust shift. Subsequently, we formalise attribute assurance trust modelling by a metaframework. It encompasses the attestation and trust network as well as the trust decision process, including the trust function, as central components. A secure attribute assurance trust model depends on the security of the trust function. The trust function should consider high trust values and several attribute authorities. Furthermore, we evaluate classification, conceptual study, practical analysis and simulation as assessment strategies of trust models. For realising trust-enhancing attribute aggregation, we propose a probabilistic approach. The method exerts the principle characteristics of correctness and validity. These values are combined for one provider and subsequently for multiple issuers. We embed this trust function in a model within the self-sovereign identity ecosystem. To practically apply the trust function and solve several challenges for the service provider that arise from adopting self-sovereign identity solutions, we conceptualise and implement an identity broker. The mediator applies a component-based architecture to abstract from a single solution. Standard identity and access management protocols build the interface for applications. We can conclude that the broker's usage at the side of the service provider does not undermine self-sovereign principles, but fosters the advancement of the ecosystem. The identity broker is applied to sample web applications with distinct attribute requirements to showcase usefulness for authentication and attribute-based access control within a case study.}, language = {en} } @phdthesis{Gruetze2018, author = {Gr{\"u}tze, Toni}, title = {Adding value to text with user-generated content}, school = {Universit{\"a}t Potsdam}, pages = {ii, 114}, year = {2018}, abstract = {In recent years, the ever-growing amount of documents on the Web as well as in closed systems for private or business contexts led to a considerable increase of valuable textual information about topics, events, and entities. It is a truism that the majority of information (i.e., business-relevant data) is only available in unstructured textual form. The text mining research field comprises various practice areas that have the common goal of harvesting high-quality information from textual data. These information help addressing users' information needs. In this thesis, we utilize the knowledge represented in user-generated content (UGC) originating from various social media services to improve text mining results. These social media platforms provide a plethora of information with varying focuses. In many cases, an essential feature of such platforms is to share relevant content with a peer group. Thus, the data exchanged in these communities tend to be focused on the interests of the user base. The popularity of social media services is growing continuously and the inherent knowledge is available to be utilized. We show that this knowledge can be used for three different tasks. Initially, we demonstrate that when searching persons with ambiguous names, the information from Wikipedia can be bootstrapped to group web search results according to the individuals occurring in the documents. We introduce two models and different means to handle persons missing in the UGC source. We show that the proposed approaches outperform traditional algorithms for search result clustering. Secondly, we discuss how the categorization of texts according to continuously changing community-generated folksonomies helps users to identify new information related to their interests. We specifically target temporal changes in the UGC and show how they influence the quality of different tag recommendation approaches. Finally, we introduce an algorithm to attempt the entity linking problem, a necessity for harvesting entity knowledge from large text collections. The goal is the linkage of mentions within the documents with their real-world entities. A major focus lies on the efficient derivation of coherent links. For each of the contributions, we provide a wide range of experiments on various text corpora as well as different sources of UGC. The evaluation shows the added value that the usage of these sources provides and confirms the appropriateness of leveraging user-generated content to serve different information needs.}, language = {en} } @phdthesis{Hagedorn2023, author = {Hagedorn, Christopher}, title = {Parallel execution of causal structure learning on graphics processing units}, doi = {10.25932/publishup-59758}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597582}, school = {Universit{\"a}t Potsdam}, pages = {8, 192}, year = {2023}, abstract = {Learning the causal structures from observational data is an omnipresent challenge in data science. The amount of observational data available to Causal Structure Learning (CSL) algorithms is increasing as data is collected at high frequency from many data sources nowadays. While processing more data generally yields higher accuracy in CSL, the concomitant increase in the runtime of CSL algorithms hinders their widespread adoption in practice. CSL is a parallelizable problem. Existing parallel CSL algorithms address execution on multi-core Central Processing Units (CPUs) with dozens of compute cores. However, modern computing systems are often heterogeneous and equipped with Graphics Processing Units (GPUs) to accelerate computations. Typically, these GPUs provide several thousand compute cores for massively parallel data processing. To shorten the runtime of CSL algorithms, we design efficient execution strategies that leverage the parallel processing power of GPUs. Particularly, we derive GPU-accelerated variants of a well-known constraint-based CSL method, the PC algorithm, as it allows choosing a statistical Conditional Independence test (CI test) appropriate to the observational data characteristics. Our two main contributions are: (1) to reflect differences in the CI tests, we design three GPU-based variants of the PC algorithm tailored to CI tests that handle data with the following characteristics. We develop one variant for data assuming the Gaussian distribution model, one for discrete data, and another for mixed discrete-continuous data and data with non-linear relationships. Each variant is optimized for the appropriate CI test leveraging GPU hardware properties, such as shared or thread-local memory. Our GPU-accelerated variants outperform state-of-the-art parallel CPU-based algorithms by factors of up to 93.4× for data assuming the Gaussian distribution model, up to 54.3× for discrete data, up to 240× for continuous data with non-linear relationships and up to 655× for mixed discrete-continuous data. However, the proposed GPU-based variants are limited to datasets that fit into a single GPU's memory. (2) To overcome this shortcoming, we develop approaches to scale our GPU-based variants beyond a single GPU's memory capacity. For example, we design an out-of-core GPU variant that employs explicit memory management to process arbitrary-sized datasets. Runtime measurements on a large gene expression dataset reveal that our out-of-core GPU variant is 364 times faster than a parallel CPU-based CSL algorithm. Overall, our proposed GPU-accelerated variants speed up CSL in numerous settings to foster CSL's adoption in practice and research.}, language = {en} } @phdthesis{Halfpap2024, author = {Halfpap, Stefan}, title = {Integer linear programming-based heuristics for partially replicated database clusters and selecting indexes}, doi = {10.25932/publishup-63361}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-633615}, school = {Universit{\"a}t Potsdam}, pages = {iii, 185}, year = {2024}, abstract = {Column-oriented database systems can efficiently process transactional and analytical queries on a single node. However, increasing or peak analytical loads can quickly saturate single-node database systems. Then, a common scale-out option is using a database cluster with a single primary node for transaction processing and read-only replicas. Using (the naive) full replication, queries are distributed among nodes independently of the accessed data. This approach is relatively expensive because all nodes must store all data and apply all data modifications caused by inserts, deletes, or updates. In contrast to full replication, partial replication is a more cost-efficient implementation: Instead of duplicating all data to all replica nodes, partial replicas store only a subset of the data while being able to process a large workload share. Besides lower storage costs, partial replicas enable (i) better scaling because replicas must potentially synchronize only subsets of the data modifications and thus have more capacity for read-only queries and (ii) better elasticity because replicas have to load less data and can be set up faster. However, splitting the overall workload evenly among the replica nodes while optimizing the data allocation is a challenging assignment problem. The calculation of optimized data allocations in a partially replicated database cluster can be modeled using integer linear programming (ILP). ILP is a common approach for solving assignment problems, also in the context of database systems. Because ILP is not scalable, existing approaches (also for calculating partial allocations) often fall back to simple (e.g., greedy) heuristics for larger problem instances. Simple heuristics may work well but can lose optimization potential. In this thesis, we present optimal and ILP-based heuristic programming models for calculating data fragment allocations for partially replicated database clusters. Using ILP, we are flexible to extend our models to (i) consider data modifications and reallocations and (ii) increase the robustness of allocations to compensate for node failures and workload uncertainty. We evaluate our approaches for TPC-H, TPC-DS, and a real-world accounting workload and compare the results to state-of-the-art allocation approaches. Our evaluations show significant improvements for varied allocation's properties: Compared to existing approaches, we can, for example, (i) almost halve the amount of allocated data, (ii) improve the throughput in case of node failures and workload uncertainty while using even less memory, (iii) halve the costs of data modifications, and (iv) reallocate less than 90\% of data when adding a node to the cluster. Importantly, we can calculate the corresponding ILP-based heuristic solutions within a few seconds. Finally, we demonstrate that the ideas of our ILP-based heuristics are also applicable to the index selection problem.}, language = {en} } @phdthesis{Harmouch2020, author = {Harmouch, Hazar}, title = {Single-column data profiling}, doi = {10.25932/publishup-47455}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474554}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2020}, abstract = {The research area of data profiling consists of a large set of methods and processes to examine a given dataset and determine metadata about it. Typically, different data profiling tasks address different kinds of metadata, comprising either various statistics about individual columns (Single-column Analysis) or relationships among them (Dependency Discovery). Among the basic statistics about a column are data type, header, the number of unique values (the column's cardinality), maximum and minimum values, the number of null values, and the value distribution. Dependencies involve, for instance, functional dependencies (FDs), inclusion dependencies (INDs), and their approximate versions. Data profiling has a wide range of conventional use cases, namely data exploration, cleansing, and integration. The produced metadata is also useful for database management and schema reverse engineering. Data profiling has also more novel use cases, such as big data analytics. The generated metadata describes the structure of the data at hand, how to import it, what it is about, and how much of it there is. Thus, data profiling can be considered as an important preparatory task for many data analysis and mining scenarios to assess which data might be useful and to reveal and understand a new dataset's characteristics. In this thesis, the main focus is on the single-column analysis class of data profiling tasks. We study the impact and the extraction of three of the most important metadata about a column, namely the cardinality, the header, and the number of null values. First, we present a detailed experimental study of twelve cardinality estimation algorithms. We classify the algorithms and analyze their efficiency, scaling far beyond the original experiments and testing theoretical guarantees. Our results highlight their trade-offs and point out the possibility to create a parallel or a distributed version of these algorithms to cope with the growing size of modern datasets. Then, we present a fully automated, multi-phase system to discover human-understandable, representative, and consistent headers for a target table in cases where headers are missing, meaningless, or unrepresentative for the column values. Our evaluation on Wikipedia tables shows that 60\% of the automatically discovered schemata are exact and complete. Considering more schema candidates, top-5 for example, increases this percentage to 72\%. Finally, we formally and experimentally show the ghost and fake FDs phenomenon caused by FD discovery over datasets with missing values. We propose two efficient scores, probabilistic and likelihood-based, for estimating the genuineness of a discovered FD. Our extensive set of experiments on real-world and semi-synthetic datasets show the effectiveness and efficiency of these scores.}, language = {en} } @phdthesis{Herzberg2018, author = {Herzberg, Nico}, title = {Integrating events into non-automated business process environments}, school = {Universit{\"a}t Potsdam}, pages = {243}, year = {2018}, language = {en} } @phdthesis{Hesse2022, author = {Hesse, G{\"u}nter}, title = {A benchmark for enterprise stream processing architectures}, doi = {10.25932/publishup-56600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566000}, school = {Universit{\"a}t Potsdam}, pages = {ix, 148}, year = {2022}, abstract = {Data stream processing systems (DSPSs) are a key enabler to integrate continuously generated data, such as sensor measurements, into enterprise applications. DSPSs allow to steadily analyze information from data streams, e.g., to monitor manufacturing processes and enable fast reactions to anomalous behavior. Moreover, DSPSs continuously filter, sample, and aggregate incoming streams of data, which reduces the data size, and thus data storage costs. The growing volumes of generated data have increased the demand for high-performance DSPSs, leading to a higher interest in these systems and to the development of new DSPSs. While having more DSPSs is favorable for users as it allows choosing the system that satisfies their requirements the most, it also introduces the challenge of identifying the most suitable DSPS regarding current needs as well as future demands. Having a solution to this challenge is important because replacements of DSPSs require the costly re-writing of applications if no abstraction layer is used for application development. However, quantifying performance differences between DSPSs is a difficult task. Existing benchmarks fail to integrate all core functionalities of DSPSs and lack tool support, which hinders objective result comparisons. Moreover, no current benchmark covers the combination of streaming data with existing structured business data, which is particularly relevant for companies. This thesis proposes a performance benchmark for enterprise stream processing called ESPBench. With enterprise stream processing, we refer to the combination of streaming and structured business data. Our benchmark design represents real-world scenarios and allows for an objective result comparison as well as scaling of data. The defined benchmark query set covers all core functionalities of DSPSs. The benchmark toolkit automates the entire benchmark process and provides important features, such as query result validation and a configurable data ingestion rate. To validate ESPBench and to ease the use of the benchmark, we propose an example implementation of the ESPBench queries leveraging the Apache Beam software development kit (SDK). The Apache Beam SDK is an abstraction layer designed for developing stream processing applications that is applied in academia as well as enterprise contexts. It allows to run the defined applications on any of the supported DSPSs. The performance impact of Apache Beam is studied in this dissertation as well. The results show that there is a significant influence that differs among DSPSs and stream processing applications. For validating ESPBench, we use the example implementation of the ESPBench queries developed using the Apache Beam SDK. We benchmark the implemented queries executed on three modern DSPSs: Apache Flink, Apache Spark Streaming, and Hazelcast Jet. The results of the study prove the functioning of ESPBench and its toolkit. ESPBench is capable of quantifying performance characteristics of DSPSs and of unveiling differences among systems. The benchmark proposed in this thesis covers all requirements to be applied in enterprise stream processing settings, and thus represents an improvement over the current state-of-the-art.}, language = {en} } @phdthesis{Hildebrandt2017, author = {Hildebrandt, Dieter}, title = {Service-oriented 3D geovisualization systems}, school = {Universit{\"a}t Potsdam}, pages = {xii, 268}, year = {2017}, abstract = {3D geovisualization systems (3DGeoVSs) that use 3D geovirtual environments as a conceptual and technical framework are increasingly used for various applications. They facilitate obtaining insights from ubiquitous geodata by exploiting human abilities that other methods cannot provide. 3DGeoVSs are often complex and evolving systems required to be adaptable and to leverage distributed resources. Designing a 3DGeoVS based on service-oriented architectures, standards, and image-based representations (SSI) facilitates resource sharing and the agile and efficient construction and change of interoperable systems. In particular, exploiting image-based representations (IReps) of 3D views on geodata supports taking full advantage of the potential of such system designs by providing an efficient, decoupled, interoperable, and increasingly applied representation. However, there is insufficient knowledge on how to build service-oriented, standards-based 3DGeoVSs that exploit IReps. This insufficiency is substantially due to technology and interoperability gaps between the geovisualization domain and further domains that such systems rely on. This work presents a coherent framework of contributions that support designing the software architectures of targeted systems and exploiting IReps for providing, styling, and interacting with geodata. The contributions uniquely integrate existing concepts from multiple domains and novel contributions for identified limitations. The proposed software reference architecture (SRA) for 3DGeoVSs based on SSI facilitates designing concrete software architectures of such systems. The SRA describes the decomposition of 3DGeoVSs into a network of services and integrates the following contributions to facilitate exploiting IReps effectively and efficiently. The proposed generalized visualization pipeline model generalizes the prevalent visualization pipeline model and overcomes its expressiveness limitations with respect to transforming IReps. The proposed approach for image-based provisioning enables generating and supplying service consumers with image-based views (IViews). IViews act as first-class data entities in the communication between services and provide a suitable IRep and encoding of geodata. The proposed approach for image-based styling separates concerns of styling from image generation and enables styling geodata uniformly represented as IViews specified as algebraic compositions of high-level styling operators. The proposed approach for interactive image-based novel view generation enables generating new IViews from existing IViews in response to interactive manipulations of the viewing camera and includes an architectural pattern that generalizes common novel view generation. The proposed interactive assisting, constrained 3D navigation technique demonstrates how a navigation technique can be built that supports users in navigating multiscale virtual 3D city models, operates in 3DGeoVSs based on SSI as an application of the SRA, can exploit IReps, and can support collaborating services in exploiting IReps. The validity of the contributions is supported by proof-of-concept prototype implementations and applications and effectiveness and efficiency studies including a user study. Results suggest that this work promises to support designing 3DGeoVSs based on SSI that are more effective and efficient and that can exploit IReps effectively and efficiently. This work presents a template software architecture and key building blocks for building novel IT solutions and applications for geodata, e.g., as components of spatial data infrastructures.}, language = {en} } @phdthesis{Ion2018, author = {Ion, Alexandra}, title = {Metamaterial devices}, doi = {10.25932/publishup-42986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429861}, school = {Universit{\"a}t Potsdam}, pages = {x, 173}, year = {2018}, abstract = {Digital fabrication machines such as 3D printers excel at producing arbitrary shapes, such as for decorative objects. In recent years, researchers started to engineer not only the outer shape of objects, but also their internal microstructure. Such objects, typically based on 3D cell grids, are known as metamaterials. Metamaterials have been used to create materials that, e.g., change their volume, or have variable compliance. While metamaterials were initially understood as materials, we propose to think of them as devices. We argue that thinking of metamaterials as devices enables us to create internal structures that offer functionalities to implement an input-process-output model without electronics, but purely within the material's internal structure. In this thesis, we investigate three aspects of such metamaterial devices that implement parts of the input-process-output model: (1) materials that process analog inputs by implementing mechanisms based on their microstructure, (2) that process digital signals by embedding mechanical computation into the object's microstructure, and (3) interactive metamaterial objects that output to the user by changing their outside to interact with their environment. The input to our metamaterial devices is provided directly by the users interacting with the device by means of physically pushing the metamaterial, e.g., turning a handle, pushing a button, etc. The design of such intricate microstructures, which enable the functionality of metamaterial devices, is not obvious. The complexity of the design arises from the fact that not only a suitable cell geometry is necessary, but that additionally cells need to play together in a well-defined way. To support users in creating such microstructures, we research and implement interactive design tools. These tools allow experts to freely edit their materials, while supporting novice users by auto-generating cells assemblies from high-level input. Our tools implement easy-to-use interactions like brushing, interactively simulate the cell structures' deformation directly in the editor, and export the geometry as a 3D-printable file. Our goal is to foster more research and innovation on metamaterial devices by allowing the broader public to contribute.}, language = {en} } @phdthesis{Jaeger2018, author = {Jaeger, David}, title = {Enabling Big Data security analytics for advanced network attack detection}, doi = {10.25932/publishup-43571}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435713}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 201, XXXIII}, year = {2018}, abstract = {The last years have shown an increasing sophistication of attacks against enterprises. Traditional security solutions like firewalls, anti-virus systems and generally Intrusion Detection Systems (IDSs) are no longer sufficient to protect an enterprise against these advanced attacks. One popular approach to tackle this issue is to collect and analyze events generated across the IT landscape of an enterprise. This task is achieved by the utilization of Security Information and Event Management (SIEM) systems. However, the majority of the currently existing SIEM solutions is not capable of handling the massive volume of data and the diversity of event representations. Even if these solutions can collect the data at a central place, they are neither able to extract all relevant information from the events nor correlate events across various sources. Hence, only rather simple attacks are detected, whereas complex attacks, consisting of multiple stages, remain undetected. Undoubtedly, security operators of large enterprises are faced with a typical Big Data problem. In this thesis, we propose and implement a prototypical SIEM system named Real-Time Event Analysis and Monitoring System (REAMS) that addresses the Big Data challenges of event data with common paradigms, such as data normalization, multi-threading, in-memory storage, and distributed processing. In particular, a mostly stream-based event processing workflow is proposed that collects, normalizes, persists and analyzes events in near real-time. In this regard, we have made various contributions in the SIEM context. First, we propose a high-performance normalization algorithm that is highly parallelized across threads and distributed across nodes. Second, we are persisting into an in-memory database for fast querying and correlation in the context of attack detection. Third, we propose various analysis layers, such as anomaly- and signature-based detection, that run on top of the normalized and correlated events. As a result, we demonstrate our capabilities to detect previously known as well as unknown attack patterns. Lastly, we have investigated the integration of cyber threat intelligence (CTI) into the analytical process, for instance, for correlating monitored user accounts with previously collected public identity leaks to identify possible compromised user accounts. In summary, we show that a SIEM system can indeed monitor a large enterprise environment with a massive load of incoming events. As a result, complex attacks spanning across the whole network can be uncovered and mitigated, which is an advancement in comparison to existing SIEM systems on the market.}, language = {en} } @phdthesis{Jain2022, author = {Jain, Nitisha}, title = {Representation and curation of knowledge graphs with embeddings}, doi = {10.25932/publishup-61224}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612240}, school = {Universit{\"a}t Potsdam}, pages = {ii, 104}, year = {2022}, abstract = {Knowledge graphs are structured repositories of knowledge that store facts about the general world or a particular domain in terms of entities and their relationships. Owing to the heterogeneity of use cases that are served by them, there arises a need for the automated construction of domain- specific knowledge graphs from texts. While there have been many research efforts towards open information extraction for automated knowledge graph construction, these techniques do not perform well in domain-specific settings. Furthermore, regardless of whether they are constructed automatically from specific texts or based on real-world facts that are constantly evolving, all knowledge graphs inherently suffer from incompleteness as well as errors in the information they hold. This thesis investigates the challenges encountered during knowledge graph construction and proposes techniques for their curation (a.k.a. refinement) including the correction of semantic ambiguities and the completion of missing facts. Firstly, we leverage existing approaches for the automatic construction of a knowledge graph in the art domain with open information extraction techniques and analyse their limitations. In particular, we focus on the challenging task of named entity recognition for artwork titles and show empirical evidence of performance improvement with our proposed solution for the generation of annotated training data. Towards the curation of existing knowledge graphs, we identify the issue of polysemous relations that represent different semantics based on the context. Having concrete semantics for relations is important for downstream appli- cations (e.g. question answering) that are supported by knowledge graphs. Therefore, we define the novel task of finding fine-grained relation semantics in knowledge graphs and propose FineGReS, a data-driven technique that discovers potential sub-relations with fine-grained meaning from existing pol- ysemous relations. We leverage knowledge representation learning methods that generate low-dimensional vectors (or embeddings) for knowledge graphs to capture their semantics and structure. The efficacy and utility of the proposed technique are demonstrated by comparing it with several baselines on the entity classification use case. Further, we explore the semantic representations in knowledge graph embed- ding models. In the past decade, these models have shown state-of-the-art results for the task of link prediction in the context of knowledge graph comple- tion. In view of the popularity and widespread application of the embedding techniques not only for link prediction but also for different semantic tasks, this thesis presents a critical analysis of the embeddings by quantitatively measuring their semantic capabilities. We investigate and discuss the reasons for the shortcomings of embeddings in terms of the characteristics of the underlying knowledge graph datasets and the training techniques used by popular models. Following up on this, we propose ReasonKGE, a novel method for generating semantically enriched knowledge graph embeddings by taking into account the semantics of the facts that are encapsulated by an ontology accompanying the knowledge graph. With a targeted, reasoning-based method for generating negative samples during the training of the models, ReasonKGE is able to not only enhance the link prediction performance, but also reduce the number of semantically inconsistent predictions made by the resultant embeddings, thus improving the quality of knowledge graphs.}, language = {en} } @phdthesis{Jiang2022, author = {Jiang, Lan}, title = {Discovering metadata in data files}, doi = {10.25932/publishup-56620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566204}, school = {Universit{\"a}t Potsdam}, pages = {x, ii, 117}, year = {2022}, abstract = {It is estimated that data scientists spend up to 80\% of the time exploring, cleaning, and transforming their data. A major reason for that expenditure is the lack of knowledge about the used data, which are often from different sources and have heterogeneous structures. As a means to describe various properties of data, metadata can help data scientists understand and prepare their data, saving time for innovative and valuable data analytics. However, metadata do not always exist: some data file formats are not capable of storing them; metadata were deleted for privacy concerns; legacy data may have been produced by systems that were not designed to store and handle meta- data. As data are being produced at an unprecedentedly fast pace and stored in diverse formats, manually creating metadata is not only impractical but also error-prone, demanding automatic approaches for metadata detection. In this thesis, we are focused on detecting metadata in CSV files - a type of plain-text file that, similar to spreadsheets, may contain different types of content at arbitrary positions. We propose a taxonomy of metadata in CSV files and specifically address the discovery of three different metadata: line and cell type, aggregations, and primary keys and foreign keys. Data are organized in an ad-hoc manner in CSV files, and do not follow a fixed structure, which is assumed by common data processing tools. Detecting the structure of such files is a prerequisite of extracting information from them, which can be addressed by detecting the semantic type, such as header, data, derived, or footnote, of each line or each cell. We propose the supervised- learning approach Strudel to detect the type of lines and cells. CSV files may also include aggregations. An aggregation represents the arithmetic relationship between a numeric cell and a set of other numeric cells. Our proposed AggreCol algorithm is capable of detecting aggregations of five arithmetic functions in CSV files. Note that stylistic features, such as font style and cell background color, do not exist in CSV files. Our proposed algorithms address the respective problems by using only content, contextual, and computational features. Storing a relational table is also a common usage of CSV files. Primary keys and foreign keys are important metadata for relational databases, which are usually not present for database instances dumped as plain-text files. We propose the HoPF algorithm to holistically detect both constraints in relational databases. Our approach is capable of distinguishing true primary and foreign keys from a great amount of spurious unique column combinations and inclusion dependencies, which can be detected by state-of-the-art data profiling algorithms.}, language = {en} } @phdthesis{Katzmann2023, author = {Katzmann, Maximilian}, title = {About the analysis of algorithms on networks with underlying hyperbolic geometry}, doi = {10.25932/publishup-58296}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582965}, school = {Universit{\"a}t Potsdam}, pages = {xi, 191}, year = {2023}, abstract = {Many complex systems that we encounter in the world can be formalized using networks. Consequently, they have been in the focus of computer science for decades, where algorithms are developed to understand and utilize these systems. Surprisingly, our theoretical understanding of these algorithms and their behavior in practice often diverge significantly. In fact, they tend to perform much better on real-world networks than one would expect when considering the theoretical worst-case bounds. One way of capturing this discrepancy is the average-case analysis, where the idea is to acknowledge the differences between practical and worst-case instances by focusing on networks whose properties match those of real graphs. Recent observations indicate that good representations of real-world networks are obtained by assuming that a network has an underlying hyperbolic geometry. In this thesis, we demonstrate that the connection between networks and hyperbolic space can be utilized as a powerful tool for average-case analysis. To this end, we first introduce strongly hyperbolic unit disk graphs and identify the famous hyperbolic random graph model as a special case of them. We then consider four problems where recent empirical results highlight a gap between theory and practice and use hyperbolic graph models to explain these phenomena theoretically. First, we develop a routing scheme, used to forward information in a network, and analyze its efficiency on strongly hyperbolic unit disk graphs. For the special case of hyperbolic random graphs, our algorithm beats existing performance lower bounds. Afterwards, we use the hyperbolic random graph model to theoretically explain empirical observations about the performance of the bidirectional breadth-first search. Finally, we develop algorithms for computing optimal and nearly optimal vertex covers (problems known to be NP-hard) and show that, on hyperbolic random graphs, they run in polynomial and quasi-linear time, respectively. Our theoretical analyses reveal interesting properties of hyperbolic random graphs and our empirical studies present evidence that these properties, as well as our algorithmic improvements translate back into practice.}, language = {en} } @phdthesis{Klimke2018, author = {Klimke, Jan}, title = {Web-based provisioning and application of large-scale virtual 3D city models}, doi = {10.25932/publishup-42805}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428053}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 141}, year = {2018}, abstract = {Virtual 3D city models represent and integrate a variety of spatial data and georeferenced data related to urban areas. With the help of improved remote-sensing technology, official 3D cadastral data, open data or geodata crowdsourcing, the quantity and availability of such data are constantly expanding and its quality is ever improving for many major cities and metropolitan regions. There are numerous fields of applications for such data, including city planning and development, environmental analysis and simulation, disaster and risk management, navigation systems, and interactive city maps. The dissemination and the interactive use of virtual 3D city models represent key technical functionality required by nearly all corresponding systems, services, and applications. The size and complexity of virtual 3D city models, their management, their handling, and especially their visualization represent challenging tasks. For example, mobile applications can hardly handle these models due to their massive data volume and data heterogeneity. Therefore, the efficient usage of all computational resources (e.g., storage, processing power, main memory, and graphics hardware, etc.) is a key requirement for software engineering in this field. Common approaches are based on complex clients that require the 3D model data (e.g., 3D meshes and 2D textures) to be transferred to them and that then render those received 3D models. However, these applications have to implement most stages of the visualization pipeline on client side. Thus, as high-quality 3D rendering processes strongly depend on locally available computer graphics resources, software engineering faces the challenge of building robust cross-platform client implementations. Web-based provisioning aims at providing a service-oriented software architecture that consists of tailored functional components for building web-based and mobile applications that manage and visualize virtual 3D city models. This thesis presents corresponding concepts and techniques for web-based provisioning of virtual 3D city models. In particular, it introduces services that allow us to efficiently build applications for virtual 3D city models based on a fine-grained service concept. The thesis covers five main areas: 1. A Service-Based Concept for Image-Based Provisioning of Virtual 3D City Models It creates a frame for a broad range of services related to the rendering and image-based dissemination of virtual 3D city models. 2. 3D Rendering Service for Virtual 3D City Models This service provides efficient, high-quality 3D rendering functionality for virtual 3D city models. In particular, it copes with requirements such as standardized data formats, massive model texturing, detailed 3D geometry, access to associated feature data, and non-assumed frame-to-frame coherence for parallel service requests. In addition, it supports thematic and artistic styling based on an expandable graphics effects library. 3. Layered Map Service for Virtual 3D City Models It generates a map-like representation of virtual 3D city models using an oblique view. It provides high visual quality, fast initial loading times, simple map-based interaction and feature data access. Based on a configurable client framework, mobile and web-based applications for virtual 3D city models can be created easily. 4. Video Service for Virtual 3D City Models It creates and synthesizes videos from virtual 3D city models. Without requiring client-side 3D rendering capabilities, users can create camera paths by a map-based user interface, configure scene contents, styling, image overlays, text overlays, and their transitions. The service significantly reduces the manual effort typically required to produce such videos. The videos can automatically be updated when the underlying data changes. 5. Service-Based Camera Interaction It supports task-based 3D camera interactions, which can be integrated seamlessly into service-based visualization applications. It is demonstrated how to build such web-based interactive applications for virtual 3D city models using this camera service. These contributions provide a framework for design, implementation, and deployment of future web-based applications, systems, and services for virtual 3D city models. The approach shows how to decompose the complex, monolithic functionality of current 3D geovisualization systems into independently designed, implemented, and operated service- oriented units. In that sense, this thesis also contributes to microservice architectures for 3D geovisualization systems—a key challenge of today's IT systems engineering to build scalable IT solutions.}, language = {en} } @phdthesis{Koumarelas2020, author = {Koumarelas, Ioannis}, title = {Data preparation and domain-agnostic duplicate detection}, doi = {10.25932/publishup-48913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489131}, school = {Universit{\"a}t Potsdam}, pages = {x, 97}, year = {2020}, abstract = {Successfully completing any data science project demands careful consideration across its whole process. Although the focus is often put on later phases of the process, in practice, experts spend more time in earlier phases, preparing data, to make them consistent with the systems' requirements or to improve their models' accuracies. Duplicate detection is typically applied during the data cleaning phase, which is dedicated to removing data inconsistencies and improving the overall quality and usability of data. While data cleaning involves a plethora of approaches to perform specific operations, such as schema alignment and data normalization, the task of detecting and removing duplicate records is particularly challenging. Duplicates arise when multiple records representing the same entities exist in a database. Due to numerous reasons, spanning from simple typographical errors to different schemas and formats of integrated databases. Keeping a database free of duplicates is crucial for most use-cases, as their existence causes false negatives and false positives when matching queries against it. These two data quality issues have negative implications for tasks, such as hotel booking, where users may erroneously select a wrong hotel, or parcel delivery, where a parcel can get delivered to the wrong address. Identifying the variety of possible data issues to eliminate duplicates demands sophisticated approaches. While research in duplicate detection is well-established and covers different aspects of both efficiency and effectiveness, our work in this thesis focuses on the latter. We propose novel approaches to improve data quality before duplicate detection takes place and apply the latter in datasets even when prior labeling is not available. Our experiments show that improving data quality upfront can increase duplicate classification results by up to 19\%. To this end, we propose two novel pipelines that select and apply generic as well as address-specific data preparation steps with the purpose of maximizing the success of duplicate detection. Generic data preparation, such as the removal of special characters, can be applied to any relation with alphanumeric attributes. When applied, data preparation steps are selected only for attributes where there are positive effects on pair similarities, which indirectly affect classification, or on classification directly. Our work on addresses is twofold; first, we consider more domain-specific approaches to improve the quality of values, and, second, we experiment with known and modified versions of similarity measures to select the most appropriate per address attribute, e.g., city or country. To facilitate duplicate detection in applications where gold standard annotations are not available and obtaining them is not possible or too expensive, we propose MDedup. MDedup is a novel, rule-based, and fully automatic duplicate detection approach that is based on matching dependencies. These dependencies can be used to detect duplicates and can be discovered using state-of-the-art algorithms efficiently and without any prior labeling. MDedup uses two pipelines to first train on datasets with known labels, learning to identify useful matching dependencies, and then be applied on unseen datasets, regardless of any existing gold standard. Finally, our work is accompanied by open source code to enable repeatability of our research results and application of our approaches to other datasets.}, language = {en} } @phdthesis{Kovacs2022, author = {Kov{\´a}cs, R{\´o}bert}, title = {Human-scale personal fabrication}, doi = {10.25932/publishup-55539}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555398}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2022}, abstract = {The availability of commercial 3D printers and matching 3D design software has allowed a wide range of users to create physical prototypes - as long as these objects are not larger than hand size. However, when attempting to create larger, "human-scale" objects, such as furniture, not only are these machines too small, but also the commonly used 3D design software is not equipped to design with forces in mind — since forces increase disproportionately with scale. In this thesis, we present a series of end-to-end fabrication software systems that support users in creating human-scale objects. They achieve this by providing three main functions that regular "small-scale" 3D printing software does not offer: (1) subdivision of the object into small printable components combined with ready-made objects, (2) editing based on predefined elements sturdy enough for larger scale, i.e., trusses, and (3) functionality for analyzing, detecting, and fixing structural weaknesses. The presented software systems also assist the fabrication process based on either 3D printing or steel welding technology. The presented systems focus on three levels of engineering challenges: (1) fabricating static load-bearing objects, (2) creating mechanisms that involve motion, such as kinematic installations, and finally (3) designing mechanisms with dynamic repetitive movement where power and energy play an important role. We demonstrate and verify the versatility of our systems by building and testing human-scale prototypes, ranging from furniture pieces, pavilions, to animatronic installations and playground equipment. We have also shared our system with schools, fablabs, and fabrication enthusiasts, who have successfully created human-scale objects that can withstand with human-scale forces.}, language = {en} } @phdthesis{Kossmann2023, author = {Koßmann, Jan}, title = {Unsupervised database optimization}, doi = {10.25932/publishup-58949}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589490}, school = {Universit{\"a}t Potsdam}, pages = {xi, 203}, year = {2023}, abstract = {The amount of data stored in databases and the complexity of database workloads are ever- increasing. Database management systems (DBMSs) offer many configuration options, such as index creation or unique constraints, which must be adapted to the specific instance to efficiently process large volumes of data. Currently, such database optimization is complicated, manual work performed by highly skilled database administrators (DBAs). In cloud scenarios, manual database optimization even becomes infeasible: it exceeds the abilities of the best DBAs due to the enormous number of deployed DBMS instances (some providers maintain millions of instances), missing domain knowledge resulting from data privacy requirements, and the complexity of the configuration tasks. Therefore, we investigate how to automate the configuration of DBMSs efficiently with the help of unsupervised database optimization. While there are numerous configuration options, in this thesis, we focus on automatic index selection and the use of data dependencies, such as functional dependencies, for query optimization. Both aspects have an extensive performance impact and complement each other by approaching unsupervised database optimization from different perspectives. Our contributions are as follows: (1) we survey automated state-of-the-art index selection algorithms regarding various criteria, e.g., their support for index interaction. We contribute an extensible platform for evaluating the performance of such algorithms with industry-standard datasets and workloads. The platform is well-received by the community and has led to follow-up research. With our platform, we derive the strengths and weaknesses of the investigated algorithms. We conclude that existing solutions often have scalability issues and cannot quickly determine (near-)optimal solutions for large problem instances. (2) To overcome these limitations, we present two new algorithms. Extend determines (near-)optimal solutions with an iterative heuristic. It identifies the best index configurations for the evaluated benchmarks. Its selection runtimes are up to 10 times lower compared with other near-optimal approaches. SWIRL is based on reinforcement learning and delivers solutions instantly. These solutions perform within 3 \% of the optimal ones. Extend and SWIRL are available as open-source implementations. (3) Our index selection efforts are complemented by a mechanism that analyzes workloads to determine data dependencies for query optimization in an unsupervised fashion. We describe and classify 58 query optimization techniques based on functional, order, and inclusion dependencies as well as on unique column combinations. The unsupervised mechanism and three optimization techniques are implemented in our open-source research DBMS Hyrise. Our approach reduces the Join Order Benchmark's runtime by 26 \% and accelerates some TPC-DS queries by up to 58 times. Additionally, we have developed a cockpit for unsupervised database optimization that allows interactive experiments to build confidence in such automated techniques. In summary, our contributions improve the performance of DBMSs, support DBAs in their work, and enable them to contribute their time to other, less arduous tasks.}, language = {en} } @phdthesis{Kraus2021, author = {Kraus, Sara Milena}, title = {A Systems Medicine approach for heart valve diseases}, doi = {10.25932/publishup-52226}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522266}, school = {Universit{\"a}t Potsdam}, pages = {xi, 186}, year = {2021}, abstract = {In Systems Medicine, in addition to high-throughput molecular data (*omics), the wealth of clinical characterization plays a major role in the overall understanding of a disease. Unique problems and challenges arise from the heterogeneity of data and require new solutions to software and analysis methods. The SMART and EurValve studies establish a Systems Medicine approach to valvular heart disease -- the primary cause of subsequent heart failure. With the aim to ascertain a holistic understanding, different *omics as well as the clinical picture of patients with aortic stenosis (AS) and mitral regurgitation (MR) are collected. Our task within the SMART consortium was to develop an IT platform for Systems Medicine as a basis for data storage, processing, and analysis as a prerequisite for collaborative research. Based on this platform, this thesis deals on the one hand with the transfer of the used Systems Biology methods to their use in the Systems Medicine context and on the other hand with the clinical and biomolecular differences of the two heart valve diseases. To advance differential expression/abundance (DE/DA) analysis software for use in Systems Medicine, we state 21 general software requirements and features of automated DE/DA software, including a novel concept for the simple formulation of experimental designs that can represent complex hypotheses, such as comparison of multiple experimental groups, and demonstrate our handling of the wealth of clinical data in two research applications DEAME and Eatomics. In user interviews, we show that novice users are empowered to formulate and test their multiple DE hypotheses based on clinical phenotype. Furthermore, we describe insights into users' general impression and expectation of the software's performance and show their intention to continue using the software for their work in the future. Both research applications cover most of the features of existing tools or even extend them, especially with respect to complex experimental designs. Eatomics is freely available to the research community as a user-friendly R Shiny application. Eatomics continued to help drive the collaborative analysis and interpretation of the proteomic profile of 75 human left myocardial tissue samples from the SMART and EurValve studies. Here, we investigate molecular changes within the two most common types of valvular heart disease: aortic valve stenosis (AS) and mitral valve regurgitation (MR). Through DE/DA analyses, we explore shared and disease-specific protein alterations, particularly signatures that could only be found in the sex-stratified analysis. In addition, we relate changes in the myocardial proteome to parameters from clinical imaging. We find comparable cardiac hypertrophy but differences in ventricular size, the extent of fibrosis, and cardiac function. We find that AS and MR show many shared remodeling effects, the most prominent of which is an increase in the extracellular matrix and a decrease in metabolism. Both effects are stronger in AS. In muscle and cytoskeletal adaptations, we see a greater increase in mechanotransduction in AS and an increase in cortical cytoskeleton in MR. The decrease in proteostasis proteins is mainly attributable to the signature of female patients with AS. We also find relevant therapeutic targets. In addition to the new findings, our work confirms several concepts from animal and heart failure studies by providing the largest collection of human tissue from in vivo collected biopsies to date. Our dataset contributing a resource for isoform-specific protein expression in two of the most common valvular heart diseases. Apart from the general proteomic landscape, we demonstrate the added value of the dataset by showing proteomic and transcriptomic evidence for increased expression of the SARS-CoV-2- receptor at pressure load but not at volume load in the left ventricle and also provide the basis of a newly developed metabolic model of the heart.}, language = {en} } @phdthesis{Krejca2019, author = {Krejca, Martin Stefan}, title = {Theoretical analyses of univariate estimation-of-distribution algorithms}, doi = {10.25932/publishup-43487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434870}, school = {Universit{\"a}t Potsdam}, pages = {xii, 243}, year = {2019}, abstract = {Optimization is a core part of technological advancement and is usually heavily aided by computers. However, since many optimization problems are hard, it is unrealistic to expect an optimal solution within reasonable time. Hence, heuristics are employed, that is, computer programs that try to produce solutions of high quality quickly. One special class are estimation-of-distribution algorithms (EDAs), which are characterized by maintaining a probabilistic model over the problem domain, which they evolve over time. In an iterative fashion, an EDA uses its model in order to generate a set of solutions, which it then uses to refine the model such that the probability of producing good solutions is increased. In this thesis, we theoretically analyze the class of univariate EDAs over the Boolean domain, that is, over the space of all length-n bit strings. In this setting, the probabilistic model of a univariate EDA consists of an n-dimensional probability vector where each component denotes the probability to sample a 1 for that position in order to generate a bit string. My contribution follows two main directions: first, we analyze general inherent properties of univariate EDAs. Second, we determine the expected run times of specific EDAs on benchmark functions from theory. In the first part, we characterize when EDAs are unbiased with respect to the problem encoding. We then consider a setting where all solutions look equally good to an EDA, and we show that the probabilistic model of an EDA quickly evolves into an incorrect model if it is always updated such that it does not change in expectation. In the second part, we first show that the algorithms cGA and MMAS-fp are able to efficiently optimize a noisy version of the classical benchmark function OneMax. We perturb the function by adding Gaussian noise with a variance of σ², and we prove that the algorithms are able to generate the true optimum in a time polynomial in σ² and the problem size n. For the MMAS-fp, we generalize this result to linear functions. Further, we prove a run time of Ω(n log(n)) for the algorithm UMDA on (unnoisy) OneMax. Last, we introduce a new algorithm that is able to optimize the benchmark functions OneMax and LeadingOnes both in O(n log(n)), which is a novelty for heuristics in the domain we consider.}, language = {en} } @phdthesis{Krentz2019, author = {Krentz, Konrad-Felix}, title = {A Denial-of-Sleep-Resilient Medium Access Control Layer for IEEE 802.15.4 Networks}, doi = {10.25932/publishup-43930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439301}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 187}, year = {2019}, abstract = {With the emergence of the Internet of things (IoT), plenty of battery-powered and energy-harvesting devices are being deployed to fulfill sensing and actuation tasks in a variety of application areas, such as smart homes, precision agriculture, smart cities, and industrial automation. In this context, a critical issue is that of denial-of-sleep attacks. Such attacks temporarily or permanently deprive battery-powered, energy-harvesting, or otherwise energy-constrained devices of entering energy-saving sleep modes, thereby draining their charge. At the very least, a successful denial-of-sleep attack causes a long outage of the victim device. Moreover, to put battery-powered devices back into operation, their batteries have to be replaced. This is tedious and may even be infeasible, e.g., if a battery-powered device is deployed at an inaccessible location. While the research community came up with numerous defenses against denial-of-sleep attacks, most present-day IoT protocols include no denial-of-sleep defenses at all, presumably due to a lack of awareness and unsolved integration problems. After all, despite there are many denial-of-sleep defenses, effective defenses against certain kinds of denial-of-sleep attacks are yet to be found. The overall contribution of this dissertation is to propose a denial-of-sleep-resilient medium access control (MAC) layer for IoT devices that communicate over IEEE 802.15.4 links. Internally, our MAC layer comprises two main components. The first main component is a denial-of-sleep-resilient protocol for establishing session keys among neighboring IEEE 802.15.4 nodes. The established session keys serve the dual purpose of implementing (i) basic wireless security and (ii) complementary denial-of-sleep defenses that belong to the second main component. The second main component is a denial-of-sleep-resilient MAC protocol. Notably, this MAC protocol not only incorporates novel denial-of-sleep defenses, but also state-of-the-art mechanisms for achieving low energy consumption, high throughput, and high delivery ratios. Altogether, our MAC layer resists, or at least greatly mitigates, all denial-of-sleep attacks against it we are aware of. Furthermore, our MAC layer is self-contained and thus can act as a drop-in replacement for IEEE 802.15.4-compliant MAC layers. In fact, we implemented our MAC layer in the Contiki-NG operating system, where it seamlessly integrates into an existing protocol stack.}, language = {en} } @phdthesis{Krohmer2016, author = {Krohmer, Anton}, title = {Structures \& algorithms in hyperbolic random graphs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395974}, school = {Universit{\"a}t Potsdam}, pages = {xii, 102}, year = {2016}, abstract = {Complex networks are ubiquitous in nature and society. They appear in vastly different domains, for instance as social networks, biological interactions or communication networks. Yet in spite of their different origins, these networks share many structural characteristics. For instance, their degree distribution typically follows a power law. This means that the fraction of vertices of degree k is proportional to k^(-β) for some constant β; making these networks highly inhomogeneous. Furthermore, they also typically have high clustering, meaning that links between two nodes are more likely to appear if they have a neighbor in common. To mathematically study the behavior of such networks, they are often modeled as random graphs. Many of the popular models like inhomogeneous random graphs or Preferential Attachment excel at producing a power law degree distribution. Clustering, on the other hand, is in these models either not present or artificially enforced. Hyperbolic random graphs bridge this gap by assuming an underlying geometry to the graph: Each vertex is assigned coordinates in the hyperbolic plane, and two vertices are connected if they are nearby. Clustering then emerges as a natural consequence: Two nodes joined by an edge are close by and therefore have many neighbors in common. On the other hand, the exponential expansion of space in the hyperbolic plane naturally produces a power law degree sequence. Due to the hyperbolic geometry, however, rigorous mathematical treatment of this model can quickly become mathematically challenging. In this thesis, we improve upon the understanding of hyperbolic random graphs by studying its structural and algorithmical properties. Our main contribution is threefold. First, we analyze the emergence of cliques in this model. We find that whenever the power law exponent β is 2 < β < 3, there exists a clique of polynomial size in n. On the other hand, for β >= 3, the size of the largest clique is logarithmic; which severely contrasts previous models with a constant size clique in this case. We also provide efficient algorithms for finding cliques if the hyperbolic node coordinates are known. Second, we analyze the diameter, i. e., the longest shortest path in the graph. We find that it is of order O(polylog(n)) if 2 < β < 3 and O(logn) if β > 3. To complement these findings, we also show that the diameter is of order at least Ω(logn). Third, we provide an algorithm for embedding a real-world graph into the hyperbolic plane using only its graph structure. To ensure good quality of the embedding, we perform extensive computational experiments on generated hyperbolic random graphs. Further, as a proof of concept, we embed the Amazon product recommendation network and observe that products from the same category are mapped close together.}, language = {en} } @phdthesis{Kruse2018, author = {Kruse, Sebastian}, title = {Scalable data profiling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412521}, school = {Universit{\"a}t Potsdam}, pages = {ii, 156}, year = {2018}, abstract = {Data profiling is the act of extracting structural metadata from datasets. Structural metadata, such as data dependencies and statistics, can support data management operations, such as data integration and data cleaning. Data management often is the most time-consuming activity in any data-related project. Its support is extremely valuable in our data-driven world, so that more time can be spent on the actual utilization of the data, e. g., building analytical models. In most scenarios, however, structural metadata is not given and must be extracted first. Therefore, efficient data profiling methods are highly desirable. Data profiling is a computationally expensive problem; in fact, most dependency discovery problems entail search spaces that grow exponentially in the number of attributes. To this end, this thesis introduces novel discovery algorithms for various types of data dependencies - namely inclusion dependencies, conditional inclusion dependencies, partial functional dependencies, and partial unique column combinations - that considerably improve over state-of-the-art algorithms in terms of efficiency and that scale to datasets that cannot be processed by existing algorithms. The key to those improvements are not only algorithmic innovations, such as novel pruning rules or traversal strategies, but also algorithm designs tailored for distributed execution. While distributed data profiling has been mostly neglected by previous works, it is a logical consequence on the face of recent hardware trends and the computational hardness of dependency discovery. To demonstrate the utility of data profiling for data management, this thesis furthermore presents Metacrate, a database for structural metadata. Its salient features are its flexible data model, the capability to integrate various kinds of structural metadata, and its rich metadata analytics library. We show how to perform a data anamnesis of unknown, complex datasets based on this technology. In particular, we describe in detail how to reconstruct the schemata and assess their quality as part of the data anamnesis. The data profiling algorithms and Metacrate have been carefully implemented, integrated with the Metanome data profiling tool, and are available as free software. In that way, we intend to allow for easy repeatability of our research results and also provide them for actual usage in real-world data-related projects.}, language = {en} } @phdthesis{Ladleif2021, author = {Ladleif, Jan}, title = {Enforceability aspects of smart contracts on blockchain networks}, doi = {10.25932/publishup-51908}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519088}, school = {Universit{\"a}t Potsdam}, pages = {xix, 152}, year = {2021}, abstract = {Smart contracts promise to reform the legal domain by automating clerical and procedural work, and minimizing the risk of fraud and manipulation. Their core idea is to draft contract documents in a way which allows machines to process them, to grasp the operational and non-operational parts of the underlying legal agreements, and to use tamper-proof code execution alongside established judicial systems to enforce their terms. The implementation of smart contracts has been largely limited by the lack of an adequate technological foundation which does not place an undue amount of trust in any contract party or external entity. Only recently did the emergence of Decentralized Applications (DApps) change this: Stored and executed via transactions on novel distributed ledger and blockchain networks, powered by complex integrity and consensus protocols, DApps grant secure computation and immutable data storage while at the same time eliminating virtually all assumptions of trust. However, research on how to effectively capture, deploy, and most of all enforce smart contracts with DApps in mind is still in its infancy. Starting from the initial expression of a smart contract's intent and logic, to the operation of concrete instances in practical environments, to the limits of automatic enforcement---many challenges remain to be solved before a widespread use and acceptance of smart contracts can be achieved. This thesis proposes a model-driven smart contract management approach to tackle some of these issues. A metamodel and semantics of smart contracts are presented, containing concepts such as legal relations, autonomous and non-autonomous actions, and their interplay. Guided by the metamodel, the notion and a system architecture of a Smart Contract Management System (SCMS) is introduced, which facilitates smart contracts in all phases of their lifecycle. Relying on DApps in heterogeneous multi-chain environments, the SCMS approach is evaluated by a proof-of-concept implementation showing both its feasibility and its limitations. Further, two specific enforceability issues are explored in detail: The performance of fully autonomous tamper-proof behavior with external off-chain dependencies and the evaluation of temporal constraints within DApps, both of which are essential for smart contracts but challenging to support in the restricted transaction-driven and closed environment of blockchain networks. Various strategies of implementing or emulating these capabilities, which are ultimately applicable to all kinds of DApp projects independent of smart contracts, are presented and evaluated.}, language = {en} } @phdthesis{Lazaridou2021, author = {Lazaridou, Konstantina}, title = {Revealing hidden patterns in political news and social media with machine learning}, doi = {10.25932/publishup-50273}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-502734}, school = {Universit{\"a}t Potsdam}, pages = {xv, 140}, year = {2021}, abstract = {As part of our everyday life we consume breaking news and interpret it based on our own viewpoints and beliefs. We have easy access to online social networking platforms and news media websites, where we inform ourselves about current affairs and often post about our own views, such as in news comments or social media posts. The media ecosystem enables opinions and facts to travel from news sources to news readers, from news article commenters to other readers, from social network users to their followers, etc. The views of the world many of us have depend on the information we receive via online news and social media. Hence, it is essential to maintain accurate, reliable and objective online content to ensure democracy and verity on the Web. To this end, we contribute to a trustworthy media ecosystem by analyzing news and social media in the context of politics to ensure that media serves the public interest. In this thesis, we use text mining, natural language processing and machine learning techniques to reveal underlying patterns in political news articles and political discourse in social networks. Mainstream news sources typically cover a great amount of the same news stories every day, but they often place them in a different context or report them from different perspectives. In this thesis, we are interested in how distinct and predictable newspaper journalists are, in the way they report the news, as a means to understand and identify their different political beliefs. To this end, we propose two models that classify text from news articles to their respective original news source, i.e., reported speech and also news comments. Our goal is to capture systematic quoting and commenting patterns by journalists and news commenters respectively, which can lead us to the newspaper where the quotes and comments are originally published. Predicting news sources can help us understand the potential subjective nature behind news storytelling and the magnitude of this phenomenon. Revealing this hidden knowledge can restore our trust in media by advancing transparency and diversity in the news. Media bias can be expressed in various subtle ways in the text and it is often challenging to identify these bias manifestations correctly, even for humans. However, media experts, e.g., journalists, are a powerful resource that can help us overcome the vague definition of political media bias and they can also assist automatic learners to find the hidden bias in the text. Due to the enormous technological advances in artificial intelligence, we hypothesize that identifying political bias in the news could be achieved through the combination of sophisticated deep learning modelsxi and domain expertise. Therefore, our second contribution is a high-quality and reliable news dataset annotated by journalists for political bias and a state-of-the-art solution for this task based on curriculum learning. Our aim is to discover whether domain expertise is necessary for this task and to provide an automatic solution for this traditionally manually-solved problem. User generated content is fundamentally different from news articles, e.g., messages are shorter, they are often personal and opinionated, they refer to specific topics and persons, etc. Regarding political and socio-economic news, individuals in online communities make use of social networks to keep their peers up-to-date and to share their own views on ongoing affairs. We believe that social media is also an as powerful instrument for information flow as the news sources are, and we use its unique characteristic of rapid news coverage for two applications. We analyze Twitter messages and debate transcripts during live political presidential debates to automatically predict the topics that Twitter users discuss. Our goal is to discover the favoured topics in online communities on the dates of political events as a way to understand the political subjects of public interest. With the up-to-dateness of microblogs, an additional opportunity emerges, namely to use social media posts and leverage the real-time verity about discussed individuals to find their locations. That is, given a person of interest that is mentioned in online discussions, we use the wisdom of the crowd to automatically track her physical locations over time. We evaluate our approach in the context of politics, i.e., we predict the locations of US politicians as a proof of concept for important use cases, such as to track people that are national risks, e.g., warlords and wanted criminals.}, language = {en} } @phdthesis{Limberger2024, author = {Limberger, Daniel}, title = {Concepts and techniques for 3D-embedded treemaps and their application to software visualization}, doi = {10.25932/publishup-63201}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-632014}, school = {Universit{\"a}t Potsdam}, pages = {xi, 118}, year = {2024}, abstract = {This thesis addresses concepts and techniques for interactive visualization of hierarchical data using treemaps. It explores (1) how treemaps can be embedded in 3D space to improve their information content and expressiveness, (2) how the readability of treemaps can be improved using level-of-detail and degree-of-interest techniques, and (3) how to design and implement a software framework for the real-time web-based rendering of treemaps embedded in 3D. With a particular emphasis on their application, use cases from software analytics are taken to test and evaluate the presented concepts and techniques. Concerning the first challenge, this thesis shows that a 3D attribute space offers enhanced possibilities for the visual mapping of data compared to classical 2D treemaps. In particular, embedding in 3D allows for improved implementation of visual variables (e.g., by sketchiness and color weaving), provision of new visual variables (e.g., by physically based materials and in situ templates), and integration of visual metaphors (e.g., by reference surfaces and renderings of natural phenomena) into the three-dimensional representation of treemaps. For the second challenge—the readability of an information visualization—the work shows that the generally higher visual clutter and increased cognitive load typically associated with three-dimensional information representations can be kept low in treemap-based representations of both small and large hierarchical datasets. By introducing an adaptive level-of-detail technique, we cannot only declutter the visualization results, thereby reducing cognitive load and mitigating occlusion problems, but also summarize and highlight relevant data. Furthermore, this approach facilitates automatic labeling, supports the emphasis on data outliers, and allows visual variables to be adjusted via degree-of-interest measures. The third challenge is addressed by developing a real-time rendering framework with WebGL and accumulative multi-frame rendering. The framework removes hardware constraints and graphics API requirements, reduces interaction response times, and simplifies high-quality rendering. At the same time, the implementation effort for a web-based deployment of treemaps is kept reasonable. The presented visualization concepts and techniques are applied and evaluated for use cases in software analysis. In this domain, data about software systems, especially about the state and evolution of the source code, does not have a descriptive appearance or natural geometric mapping, making information visualization a key technology here. In particular, software source code can be visualized with treemap-based approaches because of its inherently hierarchical structure. With treemaps embedded in 3D, we can create interactive software maps that visually map, software metrics, software developer activities, or information about the evolution of software systems alongside their hierarchical module structure. Discussions on remaining challenges and opportunities for future research for 3D-embedded treemaps and their applications conclude the thesis.}, language = {en} } @phdthesis{Lindinger2023, author = {Lindinger, Jakob}, title = {Variational inference for composite Gaussian process models}, doi = {10.25932/publishup-60444}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604441}, school = {Universit{\"a}t Potsdam}, pages = {xi, 122}, year = {2023}, abstract = {Most machine learning methods provide only point estimates when being queried to predict on new data. This is problematic when the data is corrupted by noise, e.g. from imperfect measurements, or when the queried data point is very different to the data that the machine learning model has been trained with. Probabilistic modelling in machine learning naturally equips predictions with corresponding uncertainty estimates which allows a practitioner to incorporate information about measurement noise into the modelling process and to know when not to trust the predictions. A well-understood, flexible probabilistic framework is provided by Gaussian processes that are ideal as building blocks of probabilistic models. They lend themself naturally to the problem of regression, i.e., being given a set of inputs and corresponding observations and then predicting likely observations for new unseen inputs, and can also be adapted to many more machine learning tasks. However, exactly inferring the optimal parameters of such a Gaussian process model (in a computationally tractable manner) is only possible for regression tasks in small data regimes. Otherwise, approximate inference methods are needed, the most prominent of which is variational inference. In this dissertation we study models that are composed of Gaussian processes embedded in other models in order to make those more flexible and/or probabilistic. The first example are deep Gaussian processes which can be thought of as a small network of Gaussian processes and which can be employed for flexible regression. The second model class that we study are Gaussian process state-space models. These can be used for time-series modelling, i.e., the task of being given a stream of data ordered by time and then predicting future observations. For both model classes the state-of-the-art approaches offer a trade-off between expressive models and computational properties (e.g. speed or convergence properties) and mostly employ variational inference. Our goal is to improve inference in both models by first getting a deep understanding of the existing methods and then, based on this, to design better inference methods. We achieve this by either exploring the existing trade-offs or by providing general improvements applicable to multiple methods. We first provide an extensive background, introducing Gaussian processes and their sparse (approximate and efficient) variants. We continue with a description of the models under consideration in this thesis, deep Gaussian processes and Gaussian process state-space models, including detailed derivations and a theoretical comparison of existing methods. Then we start analysing deep Gaussian processes more closely: Trading off the properties (good optimisation versus expressivity) of state-of-the-art methods in this field, we propose a new variational inference based approach. We then demonstrate experimentally that our new algorithm leads to better calibrated uncertainty estimates than existing methods. Next, we turn our attention to Gaussian process state-space models, where we closely analyse the theoretical properties of existing methods.The understanding gained in this process leads us to propose a new inference scheme for general Gaussian process state-space models that incorporates effects on multiple time scales. This method is more efficient than previous approaches for long timeseries and outperforms its comparison partners on data sets in which effects on multiple time scales (fast and slowly varying dynamics) are present. Finally, we propose a new inference approach for Gaussian process state-space models that trades off the properties of state-of-the-art methods in this field. By combining variational inference with another approximate inference method, the Laplace approximation, we design an efficient algorithm that outperforms its comparison partners since it achieves better calibrated uncertainties.}, language = {en} } @phdthesis{Lopes2018, author = {Lopes, Pedro}, title = {Interactive Systems Based on Electrical Muscle Stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421165}, school = {Universit{\"a}t Potsdam}, pages = {171}, year = {2018}, abstract = {How can interactive devices connect with users in the most immediate and intimate way? This question has driven interactive computing for decades. Throughout the last decades, we witnessed how mobile devices moved computing into users' pockets, and recently, wearables put computing in constant physical contact with the user's skin. In both cases moving the devices closer to users allowed devices to sense more of the user, and thus act more personal. The main question that drives our research is: what is the next logical step? Some researchers argue that the next generation of interactive devices will move past the user's skin and be directly implanted inside the user's body. This has already happened in that we have pacemakers, insulin pumps, etc. However, we argue that what we see is not devices moving towards the inside of the user's body, but rather towards the body's biological "interface" they need to address in order to perform their function. To implement our vision, we created a set of devices that intentionally borrow parts of the user's body for input and output, rather than adding more technology to the body. In this dissertation we present one specific flavor of such devices, i.e., devices that borrow the user's muscles. We engineered I/O devices that interact with the user by reading and controlling muscle activity. To achieve the latter, our devices are based on medical-grade signal generators and electrodes attached to the user's skin that send electrical impulses to the user's muscles; these impulses then cause the user's muscles to contract. While electrical muscle stimulation (EMS) devices have been used to regenerate lost motor functions in rehabilitation medicine since the 1960s, in this dissertation, we propose a new perspective: EMS as a means for creating interactive systems. We start by presenting seven prototypes of interactive devices that we have created to illustrate several benefits of EMS. These devices form two main categories: (1) Devices that allow users eyes-free access to information by means of their proprioceptive sense, such as the value of a variable in a computer system, a tool, or a plot; (2) Devices that increase immersion in virtual reality by simulating large forces, such as wind, physical impact, or walls and heavy objects. Then, we analyze the potential of EMS to build interactive systems that miniaturize well and discuss how they leverage our proprioceptive sense as an I/O modality. We proceed by laying out the benefits and disadvantages of both EMS and mechanical haptic devices, such as exoskeletons. We conclude by sketching an outline for future research on EMS by listing open technical, ethical and philosophical questions that we left unanswered.}, language = {en} } @phdthesis{Loster2021, author = {Loster, Michael}, title = {Knowledge base construction with machine learning methods}, doi = {10.25932/publishup-50145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-501459}, school = {Universit{\"a}t Potsdam}, pages = {ii, 130}, year = {2021}, abstract = {Modern knowledge bases contain and organize knowledge from many different topic areas. Apart from specific entity information, they also store information about their relationships amongst each other. Combining this information results in a knowledge graph that can be particularly helpful in cases where relationships are of central importance. Among other applications, modern risk assessment in the financial sector can benefit from the inherent network structure of such knowledge graphs by assessing the consequences and risks of certain events, such as corporate insolvencies or fraudulent behavior, based on the underlying network structure. As public knowledge bases often do not contain the necessary information for the analysis of such scenarios, the need arises to create and maintain dedicated domain-specific knowledge bases. This thesis investigates the process of creating domain-specific knowledge bases from structured and unstructured data sources. In particular, it addresses the topics of named entity recognition (NER), duplicate detection, and knowledge validation, which represent essential steps in the construction of knowledge bases. As such, we present a novel method for duplicate detection based on a Siamese neural network that is able to learn a dataset-specific similarity measure which is used to identify duplicates. Using the specialized network architecture, we design and implement a knowledge transfer between two deduplication networks, which leads to significant performance improvements and a reduction of required training data. Furthermore, we propose a named entity recognition approach that is able to identify company names by integrating external knowledge in the form of dictionaries into the training process of a conditional random field classifier. In this context, we study the effects of different dictionaries on the performance of the NER classifier. We show that both the inclusion of domain knowledge as well as the generation and use of alias names results in significant performance improvements. For the validation of knowledge represented in a knowledge base, we introduce Colt, a framework for knowledge validation based on the interactive quality assessment of logical rules. In its most expressive implementation, we combine Gaussian processes with neural networks to create Colt-GP, an interactive algorithm for learning rule models. Unlike other approaches, Colt-GP uses knowledge graph embeddings and user feedback to cope with data quality issues of knowledge bases. The learned rule model can be used to conditionally apply a rule and assess its quality. Finally, we present CurEx, a prototypical system for building domain-specific knowledge bases from structured and unstructured data sources. Its modular design is based on scalable technologies, which, in addition to processing large datasets, ensures that the modules can be easily exchanged or extended. CurEx offers multiple user interfaces, each tailored to the individual needs of a specific user group and is fully compatible with the Colt framework, which can be used as part of the system. We conduct a wide range of experiments with different datasets to determine the strengths and weaknesses of the proposed methods. To ensure the validity of our results, we compare the proposed methods with competing approaches.}, language = {en} } @phdthesis{Mandal2019, author = {Mandal, Sankalita}, title = {Event handling in business processes}, doi = {10.25932/publishup-44170}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441700}, school = {Universit{\"a}t Potsdam}, pages = {xix, 151}, year = {2019}, abstract = {Business process management (BPM) deals with modeling, executing, monitoring, analyzing, and improving business processes. During execution, the process communicates with its environment to get relevant contextual information represented as events. Recent development of big data and the Internet of Things (IoT) enables sources like smart devices and sensors to generate tons of events which can be filtered, grouped, and composed to trigger and drive business processes. The industry standard Business Process Model and Notation (BPMN) provides several event constructs to capture the interaction possibilities between a process and its environment, e.g., to instantiate a process, to abort an ongoing activity in an exceptional situation, to take decisions based on the information carried by the events, as well as to choose among the alternative paths for further process execution. The specifications of such interactions are termed as event handling. However, in a distributed setup, the event sources are most often unaware of the status of process execution and therefore, an event is produced irrespective of the process being ready to consume it. BPMN semantics does not support such scenarios and thus increases the chance of processes getting delayed or getting in a deadlock by missing out on event occurrences which might still be relevant. The work in this thesis reviews the challenges and shortcomings of integrating real-world events into business processes, especially the subscription management. The basic integration is achieved with an architecture consisting of a process modeler, a process engine, and an event processing platform. Further, points of subscription and unsubscription along the process execution timeline are defined for different BPMN event constructs. Semantic and temporal dependencies among event subscription, event occurrence, event consumption and event unsubscription are considered. To this end, an event buffer with policies for updating the buffer, retrieving the most suitable event for the current process instance, and reusing the event has been discussed that supports issuing of early subscription. The Petri net mapping of the event handling model provides our approach with a translation of semantics from a business process perspective. Two applications based on this formal foundation are presented to support the significance of different event handling configurations on correct process execution and reachability of a process path. Prototype implementations of the approaches show that realizing flexible event handling is feasible with minor extensions of off-the-shelf process engines and event platforms.}, language = {en} }