@phdthesis{Feldmann2018, author = {Feldmann, David}, title = {Light-driven diffusioosmosis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417184}, school = {Universit{\"a}t Potsdam}, pages = {viii, 150}, year = {2018}, abstract = {The emergence of microfluidics created the need for precise and remote control of micron-sized objects. I demonstrate how light-sensitive motion can be induced at the micrometer scale by a simple addition of a photosensitive surfactant, which makes it possible to trigger hydrophobicity with light. With point-like laser irradiation, radial inward and outward hydrodynamic surface flows are remotely switched on and off. In this way, ensembles of microparticles can be moved toward or away from the irradiation center. Particle motion is analyzed according to varying parameters, such as surfactant and salt concentration, illumination condition, surface hydrophobicity, and surface structure. The physical origin of this process is the so-called light-driven diffusioosmosis (LDDO), a phenomenon that was discovered in the framework of this thesis and is described experimentally and theoretically in this work. To give a brief explanation, a focused light irradiation induces a local photoisomerization that creates a concentration gradient at the solid-liquid interface. To compensate for the change in osmotic pressure near the surface, a hydrodynamic flow along the surface is generated. Surface-surfactant interaction largely governs LDDO. It is shown that surfactant adsorption depends on the isomerization state of the surfactant. Photoisomerization, therefore, triggers a surfactant attachment or detachment from the surface. This change is considered to be one of the reasons for the formation of LDDO flow. These flows are introduced not only by a focused laser source but also by global irradiation. Porous particles show reversible repulsive and attractive interactions when dispersed in the solution of photosensitive surfactant. Repulsion and attraction is controlled by the irradiation wavelength. Illumination with red light leads to formation of aggregates, while illumination with blue light leads to the formation of a well-separated grid with equal interparticle distances, between 2µm and 80µm, depending on the particle surface density. These long-range interactions are considered to be a result of an increase or decrease of surfactant concentration around each particle, depending on the irradiation wavelength. Surfactant molecules adsorb inside the pores of the particles. A light-induced photoisomerization changes adsorption to the pores and drives surfactant molecules to the outside. The concentration gradients generate symmetric flows around each single particle resulting in local LDDO. With a break of the symmetry (i.e., by closing one side of the particle with a metal cap), one can achieve active self-propelled particle motion.}, language = {en} } @phdthesis{Schroeder2015, author = {Schr{\"o}der, Sarah}, title = {Modelling surface evolution coupled with tectonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90385}, school = {Universit{\"a}t Potsdam}, pages = {viii, 129}, year = {2015}, abstract = {This study presents the development of 1D and 2D Surface Evolution Codes (SECs) and their coupling to any lithospheric-scale (thermo-)mechanical code with a quadrilateral structured surface mesh. Both SECs involve diffusion as approach for hillslope processes and the stream power law to reflect riverbed incision. The 1D SEC settles sediment that was produced by fluvial incision in the appropriate minimum, while the supply-limited 2D SEC DANSER uses a fast filling algorithm to model sedimantation. It is based on a cellular automaton. A slope-dependent factor in the sediment flux extends the diffusion equation to nonlinear diffusion. The discharge accumulation is achieved with the D8-algorithm and an improved drainage accumulation routine. Lateral incision enhances the incision's modelling. Following empirical laws, it incises channels of several cells width. The coupling method enables different temporal and spatial resolutions of the SEC and the thermo-mechanical code. It transfers vertical as well as horizontal displacements to the surface model. A weighted smoothing of the 3D surface displacements is implemented. The smoothed displacement vectors transmit the deformation by bilinear interpolation to the surface model. These interpolation methods ensure mass conservation in both directions and prevent the two surfaces from drifting apart. The presented applications refer to the evolution of the Pamir orogen. A calibration of DANSER's parameters with geomorphological data and a DEM as initial topography highlights the advantage of lateral incision. Preserving the channel width and reflecting incision peaks in narrow channels, this closes the huge gap between current orogen-scale incision models and observed topographies. River capturing models in a system of fault-bounded block rotations reaffirm the importance of the lateral incision routine for capturing events with channel initiation. The models show a low probability of river capturings with large deflection angles. While the probability of river capturing is directly depending on the uplift rate, the erodibility inside of a dip-slip fault speeds up headward erosion along the fault: The model's capturing speed increases within a fault. Coupling DANSER with the thermo-mechanical code SLIM 3D emphasizes the versatility of the SEC. While DANSER has minor influence on the lithospheric evolution of an indenter model, the brittle surface deformation is strongly affected by its sedimentation, widening a basin in between two forming orogens and also the southern part of the southern orogen to south, east and west.}, language = {en} }