@phdthesis{Giesecke2007, author = {Giesecke, Andr{\´e}}, title = {Box-Simulationen von rotierender Magnetokonvektion im fl{\"u}ssigen Erdkern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13605}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Box-Simulationen von rotierender Magnetokonvektion im fl{\"u}ssigen Erdkern Numerische Simulationen der 3D-MHD Gleichungen sind mit Hilfe des Codes NIRVANA durchgef{\"u}hrt worden. Die Gleichungen f{\"u}r kompressible rotierende Magnetokonvektion wurden f{\"u}r erd{\"a}hnliche Bedingungen numerisch in einer kartesischen Box gel{\"o}st. Charakteristische Eigenschaften mittlerer Gr{\"o}ßen, wie der Turbulenz-Intensit{\"a}t oder der turbulente W{\"a}rmefluss, die durch die kombinierte Wirkung kleinskaliger Fluktuationen entstehen, wurden bestimmt. Die Korrelationsl{\"a}nge der Turbulenz h{\"a}ngt signifikant von der St{\"a}rke und der Orientierung des Magnetfeldes ab, und das anisotrope Verhalten der Turbulenz aufgrund von Coriolis- und Lorentzkraft ist f{\"u}r schnellere Rotation wesentlich st{\"a}rker ausgepr{\"a}gt. Die Ausbildung eines isotropen Verhaltens auf kleinen Skalen unter dem Einfluss von Rotation alleine wird bereits durch ein schwaches Magnetfeld verhindert. Dies resultiert in einer turbulenten Str{\"o}mung, die durch die vertikale Komponente dominiert wird. In Gegenwart eines horizontalen Magnetfeldes nimmt der vertikale turbulente W{\"a}rmefluss leicht mit zunehmender Feldst{\"a}rke zu, so dass die K{\"u}hlung eines rotierenden Systems verbessert wird. Der horizontale W{\"a}rmetransport ist stets westw{\"a}rts und in Richtung der Pole orientiert. Letzteres kann unter Umst{\"a}nden die Quelle f{\"u}r eine großskalige meridionale Str{\"o}mung darstellen, w{\"a}hrend erstes in globalen Simulationen mit nicht axialsymmetrischen Randbedingungen f{\"u}r den W{\"a}rmefluss von Bedeutung ist. Die mittlere elektromotorische Kraft, die die Erzeugung von magnetischem Fluss durch die Turbulenz beschreibt, wurde unmittelbar aus den L{\"o}sungen f{\"u}r Geschwindigkeit und Magnetfeld berechnet. Hieraus konnten die entsprechenden α-Koeffizienten hergeleitet werden. Aufgrund der sehr schwachen Dichtestratifizierung {\"a}ndert der α-Effekt sein Vorzeichen nahezu exakt in der Mitte der Box. Der α-Effekt ist positiv in der oberen H{\"a}lfte und negativ in der unteren H{\"a}lfte einer auf der Nordhalbkugel rotierenden Box. F{\"u}r ein starkes Magnetfeld ergibt sich zudem eine deutliche abw{\"a}rts orientierte Advektion von magnetischem Fluss. Ein Mean-Field Modell des Geodynamos wurde konstruiert, das auf dem α-Effekt basiert, wie er aus den Box-Simulationen berechnet wurde. F{\"u}r eine {\"a}ußerst beschr{\"a}nkte Klasse von radialen α-Profilen weist das lineare α^2-Modell Oszillationen auf einer Zeitskala auf, die durch die turbulente Diffusionszeit bestimmt wird. Die wesentlichen Eigenschaften der periodischen L{\"o}sungen werden pr{\"a}sentiert, und der Einfluss der Gr{\"o}ße des inneren Kerns auf die Charakteristiken des kritischen Bereichs, innerhalb dessen oszillierende L{\"o}sungen auftreten, wurden untersucht. Reversals werden als eine halbe Oszillation interpretiert. Sie sind ein recht seltenes Ereignis, da sie lediglich dann stattfinden k{\"o}nnen, wenn das α-Profil ausreichend lange in dem periodische L{\"o}sungen erlaubenden Bereich liegt. Aufgrund starker Fluktuationen auf der konvektiven Zeitskala ist die Wahrscheinlichkeit eines solchen Reversals relativ klein. In einem einfachen nicht-linearen Mean-Field Modell mit realistischen Eingabeparametern, die auf den Box-Simulationen beruhen, konnte die Plausibilit{\"a}t des Reversal-Modells anhand von Langzeitsimulationen belegt werden.}, language = {de} }