@article{ZehmLaschewskyHeunemannetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Heunemann, Peggy and Gradzielski, Michael and Prevost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Lutz, Jean-Francois}, title = {Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c0py00200c}, pages = {137 -- 147}, year = {2011}, abstract = {The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains.}, language = {en} } @article{DodooSteitzLaschewskyetal.2011, author = {Dodoo, S. and Steitz, R. and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c0cp01357a}, pages = {10318 -- 10325}, year = {2011}, abstract = {This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H2O and D2O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition.}, language = {en} } @article{SkrabaniaMiasnikovaBivigouKoumbaetal.2011, author = {Skrabania, Katja and Miasnikova, Anna and Bivigou Koumba, Achille Mayelle and Zehm, Daniel and Laschewsky, Andr{\´e}}, title = {Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c1py00173f}, pages = {2074 -- 2083}, year = {2011}, abstract = {The absorption characteristics of a large set of thiocarbonyl based chain transfer agents (CTAs) were studied by UV-vis spectroscopy in order to identify appropriate conditions for exploiting their absorbance bands in end-group analysis of polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerisation. Substitution pattern and solvent polarity were found to affect notably the wavelengths and intensities of the pi-pi*- and n-pi*-transition of the thiocarbonyl bond of dithioester and trithiocarbonate RAFT agents. Therefore, it is advisable to refer in end group analysis to the spectral parameters of low molar mass analogues of the active polymer chain ends, rather than to rely on the specific RAFT agent engaged in the polymerisation. When using appropriate conditions, the quantification of the thiocarbonyl end-groups via the pi-pi* band of the thiocarbonyl moiety around 300-310 nm allows a facile, sensitive and surprisingly precise estimation of the number average molar mass of the polymers produced, without the need of particular end group labels. Moreover, when additional methods for absolute molar mass determination can be applied, the quantification of the thiocarbonyl end-groups by UV-spectroscopy provides a good estimate of the degree of active end group for a given polymer sample.}, language = {en} } @article{PrevostWattebledLaschewskyetal.2011, author = {Prevost, Sylvain and Wattebled, Laurent and Laschewsky, Andr{\´e} and Gradzielski, Michael}, title = {Formation of monodisperse charged vesicles in mixtures of cationic gemini surfactants and anionic SDS}, series = {Langmuir}, volume = {27}, journal = {Langmuir}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la103976p}, pages = {582 -- 591}, year = {2011}, abstract = {The aggregation behavior of catanionics formed by the mixture of cationic geminis derived from dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecylsulfate (SDS) was studied by means of phase studies and comprehensive small-angle neutron scattering (SANS) experiments at 25 degrees C and 50 mM overall concentration. The results are compared to those for the previously studied SDS + DTAC system. Various gemini spacers of different natures and geometries were used, but all of them had similar lengths: an ethoxy bridge, a double bond, and an aromatic ring binding the two DTACs in three different substitutions (ortho, meta, and para). SANS and SAXS data analysis indicates that the spacer has no large effect on the spheroidal micelles of pure surfactants formed at low concentration in water; however, specific effects appear with the addition of electrolytes. Microstructures formed in the catanionic mixtures are rather strongly dependent on the nature of the spacer. The most important finding is that for the hydrophilic, flexible ethoxy bridge, monodisperse vesicles with a fixed anionic/cationic charge ratio (depending only on the surfactant in excess) are formed. Furthermore, the composition of these vesicles shows that strongly charged aggregates are formed. This study therefore provides new opportunities for developing tailor-made gemini surfactants that allow for the fine tuning of catanionic structures.}, language = {en} } @article{GlatzelLaschewskyLutz2011, author = {Glatzel, Stefan and Laschewsky, Andr{\´e} and Lutz, Jean-Francois}, title = {Well-Defined uncharged polymers with a sharp UCST in water and in physiological milieu}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma102677k}, pages = {413 -- 415}, year = {2011}, language = {en} } @article{AdelsbergerMeierKollBivigouKoumbaetal.2011, author = {Adelsberger, Joseph and Meier-Koll, Andreas and Bivigou Koumba, Achille Mayelle and Busch, Peter and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2382-3}, pages = {711 -- 720}, year = {2011}, abstract = {We investigate concentrated solutions of poly(styrene-b-N-isopropyl acrylamide) (P(S-b-NIPAM)) diblock copolymers in deuterated water (D2O). Both structural changes and the changes of the segmental dynamics occurring upon heating through the lower critical solution temperature (LCST) of PNIPAM are studied using small-angle neutron scattering and neutron spin-echo spectroscopy. The collapse of the micellar shell and the cluster formation of collapsed micelles at the LCST as well as an increase of the segmental diffusion coefficient after crossing the LCST are detected. Comparing to our recent results on a triblock copolymer P(S-b-NIPAM-b-S) [25], we observe that the collapse transition of P(S-b-NIPAM) is more complex and that the PNIPAM segmental dynamics are faster than in P(S-b-NIPAM-b-S).}, language = {en} } @article{ZhongWangAdelsbergeretal.2011, author = {Zhong, Qi and Wang, Weinan and Adelsberger, Joseph and Golosova, Anastasia and Koumba, Achille M. Bivigou and Laschewsky, Andr{\´e} and Funari, Sergio S. and Perlich, Jan and Roth, Stephan V. and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Collapse transition in thin films of poly(methoxydiethylenglycol acrylate)}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2384-1}, pages = {569 -- 581}, year = {2011}, abstract = {The thermal behavior of poly(methoxydiethylenglycol acrylate) (PMDEGA) is studied in thin hydrogel films on solid supports and is compared with the behavior in aqueous solution. The PMDEGA hydrogel film thickness is varied from 2 to 422 nm. Initially, these films are homogenous, as measured with optical microscopy, atomic force microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering (GISAXS). However, they tend to de-wet when stored under ambient conditions. Along the surface normal, no long-ranged correlations between substrate and film surface are detected with GISAXS, due to the high mobility of the polymer at room temperature. The swelling of the hydrogel films as a function of the water vapor pressure and the temperature are probed for saturated water vapor pressures between 2,380 and 3,170 Pa. While the swelling capability is found to increase with water vapor pressure, swelling in dependence on the temperature revealed a collapse phase transition of a lower critical solution temperature type. The transition temperature decreases from 40.6 A degrees C to 36.6 A degrees C with increasing film thickness, but is independent of the thickness for very thin films below a thickness of 40 nm. The observed transition temperature range compares well with the cloud points observed in dilute (0.1 wt.\%) and semi-dilute (5 wt.\%) solution which decrease from 45 A degrees C to 39 A degrees C with increasing concentration.}, language = {en} } @article{MarsatHeydenreichKleinpeteretal.2011, author = {Marsat, Jean-Noel and Heydenreich, Matthias and Kleinpeter, Erich and Berlepsch, Hans V. and Boettcher, Christoph and Laschewsky, Andr{\´e}}, title = {Self-Assembly into multicompartment micelles and selective solubilization by Hydrophilic-Lipophilic-Fluorophilic block copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma200032j}, pages = {2092 -- 2105}, year = {2011}, abstract = {Amphiphilic linear ternary block copolymers (ABC) were synthesized in three consecutive steps by the reversible addition fragmentation chain transfer (RAFT) method. Using oligo(ethylene oxide) monomethyl ether acrylate, benzyl acrylate, and 1H,1H-perfluorobutyl acrylate monomers, the triblock copolymers consist of a hydrophilic (A), a lipophilic (B), and a fluorophilic (C) block. The block sequence of the triphilic copolymers was varied systematically to provide all possible variations: ABC, ACB, and BAC. All blocks have glass transition temperatures below 0 degrees C. Self-assembly into spherical micellar aggregates was observed in aqueous solution, where hydrophobic cores undergo local phase separation into various ultrastructures as shown by cryogenic transmission electron microscopy (cryo-TEM). Selective solubilization of substantial quantities of hydrocarbon and fluorocarbon low molar mass compounds by the lipophilic and fluorophilic block, respectively, is demonstrated.}, language = {en} } @article{WeissLaschewsky2011, author = {Weiss, Jan and Laschewsky, Andr{\´e}}, title = {Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions}, series = {Langmuir}, volume = {27}, journal = {Langmuir}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la200115p}, pages = {4465 -- 4473}, year = {2011}, abstract = {A series of triple-thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (PNPAM, A), poly(methoxydiethylene glycol acrylate) (PMDEGA, B), and poly(N-ethylacrylamide) (PNEAM, C) was synthesized by sequential reversible addition-fragmentation chain transfer polymerizations. Polymers of differing block sequences, ABC, BAC, and ACB, with increasing phase transition temperatures in the order A < B < C were prepared. Their aggregation behavior in dilute aqueous solution was investigated using dynamic light scattering, turbidimetry, and NMR spectroscopy. The self-organization of such polymers was found to dependent strongly on the block sequence. While polymers with a terminal low-LCST (lower critical solution temperature) block undergo aggregation above the first phase transition temperature at 20-25 degrees C, triblock copolymers with the low-LCST block in the middle show aggregation only above the second phase transition. The collapse of the middle block is not sufficient to induce aggregation but produces instead stable, unimolecular micelles with a collapsed middle block, as supported by NMR and fluorescence probe data. Continued heating of all copolymers led to two additional thermal transitions at 40-55 and 70-80 degrees C, which could be correlated to the phase transitions of the B and C blocks, respectively. All polymers show a high tendency for cluster formation, once aggregation is induced. The carrier abilities of the triple responsive triblock copolymers for hydrophobic agents were probed with the solvatochromic fluorescence dye Nile Red. With passing through the first thermal transition, the block copolymers are capable of solubilizing Nile Red. In the case of block copolymers with sequences ABC or ACB, which bear the low-LCST block at one terminus, notable amounts of dye are solubilized already at this stage. In contrast, the hydrophobic probe is much less efficiently incorporated by the BAC triblock copolymer, which forms unimolecular micelles. Only after the collapse of the B block, when reaching the second phase transition at about 45 degrees C, does aggregation occur and solubilization becomes efficient. In the case of ABC and ACB polymers, the hydrophobic probe seems to partition between the originally collapsed A chains and the additional hydrophobic chains formed after the collapse of the less hydrophobic B block.}, language = {en} } @article{KristenHochreinLaschewskyMilleretal.2011, author = {Kristen-Hochrein, Nora and Laschewsky, Andr{\´e} and Miller, Reinhard and von Klitzing, Regine}, title = {Stability of foam Films of oppositely charged polyelectrolyte/surfactant mixtures - effect of isoelectric point}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {115}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {49}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp206964k}, pages = {14475 -- 14483}, year = {2011}, abstract = {In the present paper, the influence of the surfactant concentration and the degree of charge of a polymer on foam film properties of oppositely charged polyelectrolyte/surfactant mixtures has been investigated. To verify the assumption that the position of the isoelectric point (IEP) does not change the character of the foam film stabilities, the position of the IEP of the polyelectrolyte/surfactant mixtures has been shifted in two different ways. Within the first series of experiments, the foam. film properties were studied using a fixed surfactant concentration of 3 x 10(-5) M in the mixture. Due to the low surfactant concentration, this is a rather dilute system. In the second approach, a copolymer of nonionic and ionic monomer units was Used to lower the charge density of the polymer. This gave rise to additional interactions between the polyelectrolyte and the surfactant, which makes the description of the foam film behavior more complex. In both systems, the same characteristics of the foam film stabilities were found: The foam film stability is reduced toward the IEP of the system, followed by a destabilization around the IEP., At polyelectrolyte concentrations above the IEP, foam films are very stable. However, the concentration range where unstable films were formed was rather broad, and the mechanisms leading to the destabilization had different origins. The results were compared with former findings on PAMPS/C(14)TAB mixtures with an IEP of 10(-4)M.(1)}, language = {en} } @article{ZehmLaschewskyLiangetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Liang, Hua and Rabe, J{\"u}rgen P.}, title = {Straightforward access to amphiphilic dual bottle brushes by combining RAFT, ATRP, and NMP polymerization in one sequence}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma2015613}, pages = {9635 -- 9641}, year = {2011}, abstract = {Molecular brush diblock copolymers were synthesized by the orthogonal overlay of the RAFT (reversible addition-fragmentation chain transfer), the ATRP (atom transfer radical polymerization), and the NMP (nitroxide-mediated polymerization) techniques. This unique combination enabled the synthesis of the complex amphiphilic polymers without the need of postpolymerization modifications, using a diblock copolymer intermediate made from two selectively addressable inimers and applying a sequence of four controlled free radical polymerization steps in total. The resulting polymers are composed of a thermosensitive poly(N-isopropylacrylamide) brush as hydrophilic block and a polystyrene brush as hydrophobic block, thus translating the structure of the established amphiphilic diblock copolymers known as macro surfactants to the higher size level of "giant surfactants". The dual molecular brushes and the aggregates formed on ultra flat solid substrates were visualized by scanning force microscopy (SFM).}, language = {en} } @article{HerfurthVollBulleretal.2012, author = {Herfurth, Christoph and Voll, Dominik and Buller, Jens and Weiss, Jan and Barner-Kowollik, Christopher and Laschewsky, Andr{\´e}}, title = {Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (meth)acrylates}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {50}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0887-624X}, doi = {10.1002/pola.24994}, pages = {108 -- 118}, year = {2012}, abstract = {We report on the controlled free radical homopolymerization of 1-ferrocenylethyl acrylate as well as of three new ferrocene bearing monomers, namely 4-ferrocenylbutyl acrylate, 2-ferrocenylamido-2-methylpropyl acrylate, and 4-ferrocenylbutyl methacrylate, by the RAFT technique. For comparison, the latter monomer was polymerized using ATRP, too. The ferrocene containing monomers were found to be less reactive than their analogues free of ferrocene. The reasons for the low polymerizability are not entirely clear. As the addition of free ferrocene to the reaction mixture did not notably affect the polymerizations, sterical hindrance by the bulky ferrocene moiety fixed on the monomers seems to be the most probable explanation. Molar masses found for 1-ferrocenylethyl acrylate did not exceed 10,000 g mol(-1), while for 4-ferrocenylbutyl (meth) acrylate molar masses of 15,000 g mol(-1) could be obtained. With PDIs as low as 1.3 in RAFT polymerization of the monomers, good control over the polymerization was achieved.}, language = {en} } @article{WeissLiWischerhoffetal.2012, author = {Weiss, Jan and Li, Ang and Wischerhoff, Erik and Laschewsky, Andr{\´e}}, title = {Water-soluble random and alternating copolymers of styrene monomers with adjustable lower critical solution temperature}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c1py00422k}, pages = {352 -- 361}, year = {2012}, abstract = {Random copolymers of 4-vinylbenzyl tri(oxyethylene) and tetra(oxyethylene) ethers, as well as alternating copolymers of 4-vinylbenzyl methoxytetra(oxyethylene) ether and a series of N-substituted maleimides, were synthesised by conventional free radical polymerisation, reversible addition fragmentation chain transfer (RAFT) and atom transfer radical polymerisation (ATRP). Their thermosensitive behaviour in aqueous solution was studied by turbidimetry and dynamic light scattering. Depending on the copolymer composition, a LCST type phase transition was observed in water. The transition temperature of the obtained random as well as alternating copolymers could be varied within a broad temperature window. In the case of the random copolymers, transition temperatures could be easily fine-tuned, as they showed a linear dependence on the copolymer composition, and were additionally modified by the nature of the polymer end-groups. Alternating copolymers were extremely versatile for implementing a broad range of variations of the phase transition temperatures. Further, while alternating copolymers derived from 4-vinylbenzyl methoxytetra(oxyethylene) ether and maleimides with small hydrophobic side chains underwent macroscopic phase separation when dissolved in water and heated above their cloud point, the incorporation of maleimides bearing larger hydrophobic substituents resulted in the formation of mesoglobules above the phase transition temperature, with hydrodynamic diameters of less than 100 nm.}, language = {en} } @article{ZhongMetwalliKauneetal.2012, author = {Zhong, Qi and Metwalli, Ezzeldin and Kaune, Gunar and Rawolle, Monika and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm25401h}, pages = {5241 -- 5249}, year = {2012}, abstract = {The switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) (PMDEGA) are investigated. Homogeneous and smooth PMDEGA films with a thickness of 35.9 nm are prepared on silicon substrates by spin coating. As probed with white light interferometry, PMDEGA films with a thickness of 35.9 nm exhibit a phase transition temperature of the lower critical solution temperature (LCST) type of 40 degrees C. In situ neutron reflectivity is performed to investigate the thermo-responsive behavior of these PMDEGA hydrogel films in response to a sudden thermal stimulus in deuterated water vapor atmosphere. The collapse transition proceeds in a complex way which can be seen as three steps. The first step is the shrinkage of the initially swollen film by a release of water. In the second step the thickness remains constant with water molecules embedded in the film. In the third step, perhaps due to a conformational rearrangement of the collapsed PMDEGA chains, water is reabsorbed from the vapor atmosphere, thereby giving rise to a relaxation process. Both the shrinkage and relaxation processes can be described by a simple model of hydrogel deswelling.}, language = {en} } @article{HerfurthdeMolinaWielandetal.2012, author = {Herfurth, Christoph and de Molina, Paula Malo and Wieland, Christoph and Rogers, Sarah and Gradzielski, Michael and Laschewsky, Andr{\´e}}, title = {One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c2py20126g}, pages = {1606 -- 1617}, year = {2012}, abstract = {Multifunctional chain transfer agents for RAFT polymerisation were designed for the one-step synthesis of amphiphilic star polymers. Thus, hydrophobically end-capped 3- and 4-arm star polymers, as well as linear ones for reference, were made of the hydrophilic monomer N,N-dimethylacrylamide (DMA) in high yield with molar masses up to 150 000 g mol(-1), narrow molar mass distribution (PDI <= 1.2) and high end group functionality (similar to 90\%). The associative telechelic polymers form transient networks of interconnected aggregates in aqueous solution, thus acting as efficient viscosity enhancers and rheology modifiers, eventually forming hydrogels. The combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and rheology experiments revealed that several molecular parameters control the structure and therefore the physical properties of the aggregates. In addition to the size of the hydrophilic block (maximum length for connection) and the length of the hydrophobic alkyl chain ends (stickiness), the number of arms (functionality) proved to be a key parameter.}, language = {en} } @article{AdelsbergerMetwalliDiethertetal.2012, author = {Adelsberger, Joseph and Metwalli, Ezzeldin and Diethert, Alexander and Grillo, Isabelle and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P(S-b-NIPAM-b-S) induced by a temperature jump}, series = {Macromolecular rapid communications}, volume = {33}, journal = {Macromolecular rapid communications}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1022-1336}, doi = {10.1002/marc.201100631}, pages = {254 -- 259}, year = {2012}, abstract = {Structural changes at the intra- as well as intermicellar level were induced by the LCST-type collapse transition of poly(N-isopropyl acrylamide) in ABA triblock copolymer micelles in water. The distinct process kinetics was followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while a micellar solution of a triblock copolymer, consisting of two short deuterated polystyrene endblocks and a long thermoresponsive poly(N-isopropyl acrylamide) middle block, was heated rapidly above its cloud point. A very fast collapse together with a multistep aggregation behavior is observed. The findings of the transition occurring at several size and time levels may have implications for the design and application of such thermoresponsive self-assembled systems.}, language = {en} } @article{MiasnikovaLaschewskyDePaolietal.2012, author = {Miasnikova, Anna and Laschewsky, Andr{\´e} and De Paoli, Gabriele and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter and Funari, Sergio S.}, title = {Thermoresponsive Hydrogels from Symmetrical Triblock Copolymers Poly(styrene-block-(methoxy diethylene glycol acrylate)-block-styrene)}, series = {Langmuir}, volume = {28}, journal = {Langmuir}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la204665q}, pages = {4479 -- 4490}, year = {2012}, abstract = {A series of symmetrical, thermo-responsive triblock copolymers was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization, and studied in aqueous solution with respect to their ability to form hydrogels. Triblock copolymers were composed of two identical, permanently hydrophobic outer blocks, made of low molar mass polystyrene, and of a hydrophilic inner block of variable length, consisting of poly(methoxy diethylene glycol acrylate) PMDEGA. The polymers exhibited a LCST-type phase transition in the range of 20-40 degrees C, which markedly depended on molar mass and concentration. Accordingly, the triblock copolymers behaved as amphiphiles at low temperatures, but became water-insoluble at high temperatures. The temperature dependent self-assembly of the amphiphilic block copolymers in aqueous solution was studied by turbidimetry and rheology at concentrations up to 30 wt \%, to elucidate the impact of the inner thermoresponsive block on the gel properties. Additionally, small-angle X-ray scattering (SAXS) was performed to access the structural changes in the gel with temperature. For all polymers a gel phase was obtained at low temperatures, which underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurred. With increasing length of the PMDEGA inner block, the gel-sol transition shifts to markedly lower concentrations, as well as to higher transition temperatures. For the longest PMDEGA block studied (DPn about 450), gels had already formed at 3.5 wt \% at low temperatures. The gel-sol transition of the hydrogels and the LCST-type phase transition of the hydrophilic inner block were found to be independent of each other.}, language = {en} } @article{WeissLaschewsky2012, author = {Weiss, Jan and Laschewsky, Andr{\´e}}, title = {One-step synthesis of amphiphilic, double thermoresponsive diblock copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {45}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma300285y}, pages = {4158 -- 4165}, year = {2012}, abstract = {The copolymerization of an excess of a functionalized styrene monomer, 4-vinylbenzyl methoxytetrakis(oxyethylene) ether, with various N-substituted maleimides yields tapered diblock copolymers in a one-step procedure, when applying reversible deactivation radical polymerization (RDRP) methods, such as ATRP and RAFT. The particular chemical structure of the diblock copolymers prepared results in reversible temperature-responsive two-step aggregation behavior in dilute aqueous solution. In this way, a double hydrophilic block copolymer is transformed step by step into an amphiphilic macrosurfactant, and finally into a double hydrophobic copolymer, as followed by turbidimetry and dynamic light scattering. Copolymers in which the maleimide repeat units bear short hydrophobic side chains are freely water-soluble at low temperature and form micellar aggregates above their cloud point. Further heating above the phase transition temperature of the second block results in secondary aggregation. Copolymers with maleimides that bear strongly hydrophobic substituents undergo two thermally induced aggregation steps upon heating, too, but show in addition intramolecular hydrophobic association in water already at low temperatures, similar to the behavior of polysoaps.}, language = {en} } @article{FandrichBullerWischerhoffetal.2012, author = {Fandrich, Artur and Buller, Jens and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Electrochemical detection of the thermally induced phase transition of a thin stimuli-responsive polymer film}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {13}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201100924}, pages = {2020 -- 2023}, year = {2012}, language = {en} } @article{MiasnikovaLaschewsky2012, author = {Miasnikova, Anna and Laschewsky, Andr{\´e}}, title = {Influencing the phase transition temperature of poly(methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {50}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {16}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.26116}, pages = {3313 -- 3323}, year = {2012}, abstract = {The easily accessible, but virtually overlooked monomer methoxy diethylene glycol acrylate was polymerized by the RAFT method using monofunctional, difunctional, and trifunctional trithiocarbonates to afford thermoresponsive polymers exhibiting lower critical solution temperature-type phase transitions in aqueous solution. The use of the appropriate RAFT agent allowed for the preparation and systematic variation of polymers with defined molar mass, end-groups, and architecture, including amphiphilic diblock, symmetrical triblock, and triarm star-block copolymers, containing polystyrene as permanently hydrophobic constituent. The cloud points (CPs) of the various polymers proved to be sensitive to all varied parameters, namely molar mass, nature, and number of the end-groups, and the architecture, up to relatively high molar masses. Thus, CPs of the polymers can be adjusted within the physiological interesting range of 2040 degrees C. Remarkably, CPs increased with the molar mass, even when hydrophilic end groups were attached to the polymers.}, language = {en} } @article{deMolinaHerfurthLaschewskyetal.2012, author = {de Molina, Paula Malo and Herfurth, Christoph and Laschewsky, Andr{\´e} and Gradzielski, Michael}, title = {Structure and dynamics of networks in mixtures of hydrophobically modified telechelic multiarm polymers and oil in water microemulsions}, series = {Langmuir}, volume = {28}, journal = {Langmuir}, number = {45}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la303673a}, pages = {15994 -- 16006}, year = {2012}, abstract = {The structural and dynamical properties of oil-in-water (O/W) microemulsions (MEs) modified with telechelic polymers of different functionality (e.g., number of hydrophobically modified arms, f) were studied by means of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and high frequency rheology measurements as a function of the polymer architecture and the amount of added polymer. For this purpose, we employed tailor-made hydrophobically end-capped poly(N,N-dimethylacrylamide) star polymers of a variable number of endcaps, f, of different alkyl chain lengths, synthesized by the reversible addition-fragmentation chain transfer method. The addition of the different end-capped polymers to an uncharged ME of O/W droplets leads to a large enhancement of the viscosity of the systems. SANS experiments show that the O/W ME droplets are not changed upon the addition of the polymer, and its presence only changes the interdroplet interactions. The viscosity increases largely upon addition of a polymer, and this enhancement depends pronouncedly on the alkyl length of the hydrophobic sticker as it controls the residence time in a ME droplet. Similarly, the high frequency modulus G(0) depends on the amount of added polymer but not on the sticker length. G(0) was found to be directly proportional to f - 1. The onset of network formation is shifted to a lower number of stickers per ME droplet with increasing f, and the network formation becomes more effective. Thus, the dynamics of network formation are controlled by the polymer architecture. The effect on the dynamics seen by DLS is even more pronounced. Upon increasing the polymer concentration, slower relaxation modes appear that become especially pronounced with increasing number of arms. The relaxation dynamics are correlated to the rheological relaxation, and both are controlled by the polymer architecture.}, language = {en} } @article{BullerLaschewskyWischerhoff2013, author = {Buller, Jens and Laschewsky, Andr{\´e} and Wischerhoff, Erik}, title = {Photoreactive oligoethylene glycol polymers - versatile compounds for surface modification by thin hydrogel films}, series = {Soft matter}, volume = {9}, journal = {Soft matter}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm26879e}, pages = {929 -- 937}, year = {2013}, abstract = {Solid surfaces are modified using photo-crosslinkable copolymers based on oligo(ethylene glycol) methacrylate (OEGMA) bearing 2-(4-benzoylphenoxy) ethyl methacrylate (BPEM) as a photosensitive crosslinking unit. Thin films of about 100 nm are formed by spin-coating these a priori highly biocompatible copolymers onto silicon substrates. Subsequent UV-irradiation assures immobilization and crosslinking of the hydrogel films. Their stability is controlled by the number of crosslinker units per chain and the molar mass of the copolymers. The swelling of the hydrogel layers, as investigated by ellipsometry, can be tuned by the crosslinker content in the copolymer. If films are built from the ternary copolymers of OEGMA, BPEM and 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA), the hydrogel films exhibit a swelling/deswelling transition of the lower critical solution temperature (LCST) type. The observed thermally induced hydrogel collapse is fully reversible and the onset temperature of the transition can be tuned at will by the copolymer composition. Different from analogously prepared thermo-responsive hydrogel films of photocrosslinked poly(N-isopropylacrylamide), the swelling-deswelling transition occurs more gradually, but shows no hysteresis.}, language = {en} } @article{AdelsbergerGrilloKulkarnietal.2013, author = {Adelsberger, Joseph and Grillo, Isabelle and Kulkarni, Amit and Sharp, Melissa and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers - influence of concentration, start and target temperatures}, series = {Soft matter}, volume = {9}, journal = {Soft matter}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm27152d}, pages = {1685 -- 1699}, year = {2013}, abstract = {In aqueous solution, symmetric triblock copolymers with a thermoresponsive middle block and hydrophobic end blocks form flower-like core-shell micelles which collapse and aggregate upon heating through the cloud point (CP). The collapse of the micellar shell and the intermicellar aggregation are followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while heating micellar solutions of a poly((styrene-d(8))-b-(N-isopropyl acrylamide)-b-(styrene-d(8))) triblock copolymer in D2O rapidly through their CP. The influence of polymer concentration as well as of the start and target temperatures is addressed. In all cases, the micellar collapse is very fast. The collapsed micelles immediately form small clusters which contain voids. They densify which slows down or even stops their growth. For low concentrations and target temperatures just above the CP, i.e. shallow temperature jumps, the subsequent growth of the clusters is described by diffusion-limited aggregation. In contrast, for higher concentrations and/or higher target temperatures, i.e. deep temperature jumps, intermicellar bridges dominate the growth. Eventually, in all cases, the clusters coagulate which results in macroscopic phase separation. For shallow temperature jumps, the cluster surfaces stay rough; whereas for deep temperature jumps, a concentration gradient develops at late stages. These results are important for the development of conditions for thermal switching in applications, e.g. for the use of thermoresponsive micellar systems for transport and delivery purposes.}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and Koelsch, Jonas D. and Chiappisi, Leonardo and Janietz, Dietmar and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {1}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {40}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c3tc31304b}, pages = {6603 -- 6612}, year = {2013}, abstract = {We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore.}, language = {en} } @article{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, series = {Journal of materials chemistry : B, Materials for biology and medicine}, volume = {1}, journal = {Journal of materials chemistry : B, Materials for biology and medicine}, number = {46}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-750X}, doi = {10.1039/c3tb21245a}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and Koelsch, Jonas D. and Chiappisi, Leonardo and Kraft, Mario and Gutacker, Andrea and Janietz, Dietmar and Scherf, Ullrich and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte}, series = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, volume = {214}, journal = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, number = {4}, publisher = {WILEY-V C H VERLAG GMBH}, address = {WEINHEIM}, issn = {1022-1352}, doi = {10.1002/macp.201200493}, pages = {435 -- 445}, year = {2013}, abstract = {Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device.}, language = {en} } @article{DodooBalzerHugeletal.2013, author = {Dodoo, Samuel and Balzer, Bizan N. and Hugel, Thorsten and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour}, series = {Soft materials}, volume = {11}, journal = {Soft materials}, number = {2}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1539-445X}, doi = {10.1080/1539445X.2011.607203}, pages = {157 -- 164}, year = {2013}, abstract = {The swelling behavior of polyelectrolyte multilayers (PEMs) of poly(sodium-4 styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared from aqueous solution of 0.1 M and 0.5 M NaCl are investigated by ellipsometry and Atomic Force Microscopy (AFM). From 1 double-layer up to 4 double-layers of 0.1 M NaCl, the amount of swelling water in the PEMs decreases with increasing number of adsorbed double layers due to an increase in polyelectrolyte density as a result of the attraction between the positively charged outermost PDADMAC layer and the Si substrate. From 6 double layers to 30 double layers, the attraction is reduced due to a much larger distance between substrate and outermost layer leading to a much lower polyelectrolyte density and higher swelling water. In PEMs prepared from aqueous solution of 0.5 M NaCl, the amount of water constantly increases which is related to a monotonically decreasing polyelectrolyte density with increasing number of polyelectrolyte layers. Studies of the surface topology also indicate a transition from a more substrate affected interphase behavior to a continuum properties of the polyelectrolyte multilayers. The threshold for the transition from interphase to continuum behavior depends on the preparation conditions of the PEM.}, language = {en} } @article{ZhongMetwalliRawolleetal.2013, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Structure and Thermal Response of Thin Thermoresponsive Polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene Films}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {46}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma400627u}, pages = {4069 -- 4080}, year = {2013}, abstract = {Thin thermoresponsive films of the triblock copolymer polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene (P(S-b-MDEGA-b-S)) are investigated on silicon substrates. By spin coating, homogeneous and smooth films are prepared for a range of film thicknesses from 6 to 82 nm. Films are stable with respect to dewetting as investigated with optical microscopy and atomic force microscopy. P(S-b-MDEGA-b-S) films with a thickness of 39 nm exhibit a phase transition of the lower critical solution temperature (LCST) type at 36.5 degrees C. The swelling and the thermoresponsive behavior of the films with respect to a sudden thermal stimulus are probed with in-situ neutron reflectivity. In undersaturated water vapor swelling proceeds without thickness increase. The thermoresponse proceeds in three steps: First, the film rejects water as the temperature is above LCST. Next, it stays constant for 600 s, before the collapsed film takes up water again. With ATR-FTIR measurements, changes of bound water in the film caused by different thermal stimuli are studied. Hydrogen bonds only form between C=O and water in the swollen film. Above the LCST most hydrogen bonds with water are broken, but some amount of bound water remains inside the film in agreement with the neutron reflectivity data. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that the inner lateral structure is not significantly influenced by the different thermal stimuli.}, language = {en} } @article{ZhongAdelsbergerNiedermeieretal.2013, author = {Zhong, Qi and Adelsberger, Joseph and Niedermeier, M. A. and Golosova, Anastasi and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Funari, S. S. and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {The influence of selective solvents on the transition behavior of poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) thick films}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {291}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-012-2879-4}, pages = {1439 -- 1451}, year = {2013}, abstract = {Thick poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) [P(S-b-MDEGA-b-S)] films (thickness 5 mu m) are prepared from different solvents on flexible substrates by solution casting and investigated with small-angle X-ray scattering. As the solvents are either PS- or PMDEGA-selective, micelles with different core-shell micellar structures are formed. In PMDEGA-selective solvents, the PS block is the core and PMDEGA is the shell, whereas in PS-selective solvents, the order is reversed. After exposing the films to liquid D2O, the micellar structure inside the films prepared from PMDEGA-selective solvents remains unchanged and only the PMDEGA (shell part) swells. On the contrary, in the films prepared from PS-selective solvents, the micelles revert the core and the shell. This reversal causes more entanglements of the PMDEGA chains between the micelles. Moreover, the thermal collapse transition of the PMDEGA block in liquid D2O is significantly broadened. Irrespective of the solvent used for film preparation, the swollen PMDEGA shell does not show a prominent shrinkage when passing the phase transition, and the transition process occurs via compaction. The collapsed micelles have a tendency to densely pack above the transition temperature.}, language = {en} } @article{MiasnikovaBenitezMontoyaLaschewsky2013, author = {Miasnikova, Anna and Benitez-Montoya, Carlos Adrian and Laschewsky, Andr{\´e}}, title = {Counterintuitive photomodulation of the thermal phase transition of poly(methoxy diethylene glycol acrylate) in aqueous solution by trans-cis isomerization of Copolymerized Azobenzenes}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300203}, pages = {1504 -- 1514}, year = {2013}, abstract = {The non-ionic monomer (methoxy diethylene glycol) acrylate is copolymerized with its azodye-functionalized acrylate analogue using reversible addition-fragmentation chain transfer (RAFT) polymerization. Copolymerization is increasingly difficult with increasing amounts of the azo-dye-bearing monomer. The resulting water-soluble polymers are thermosensitive, exhibiting lower critical solution temperature (LCST) behavior, which can be modulated by the photoinduced trans-cis isomerization of the dye. While already small contents of the hydrophobic azobenzene group reduce the phase-transition temperatures of the copolymers strongly, photoisomerization of the apolar trans-state to the more-polar cis-state has only a small effect, and decreases rather than increases the cloud points.}, language = {en} } @article{MarsatStahlhutLaschewskyetal.2013, author = {Marsat, Jean-Noel and Stahlhut, Frank and Laschewsky, Andr{\´e} and von Berlepsch, Hans and B{\"o}ttcher, Christoph}, title = {Multicompartment micelles from silicone-based triphilic block copolymers}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {291}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {11}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-013-3001-2}, pages = {2561 -- 2567}, year = {2013}, abstract = {An amphiphilic linear ternary block copolymer was synthesised in three consecutive steps via reversible addition-fragmentation chain transfer polymerisation. Oligo(ethylene glycol) monomethyl ether acrylate was engaged as a hydrophilic building block, while benzyl acrylate and 3-tris(trimethylsiloxy)silyl propyl acrylate served as hydrophobic building blocks. The resulting "triphilic" copolymer consists thus of a hydrophilic (A) and two mutually incompatible "soft" hydrophobic blocks, namely, a lipophilic (B) and a silicone-based (C) block, with all blocks having glass transition temperatures well below 0 A degrees C. The triphilic copolymer self-assembles into spherical multicompartment micellar aggregates in aqueous solution, where the two hydrophobic blocks undergo local phase separation into various ultrastructures as evidenced by cryogenic transmission electron microscopy. Thus, a silicone-based polymer block can replace the hitherto typically employed fluorocarbon-based hydrophobic blocks in triphilic block copolymers for inducing multicompartmentalisation.}, language = {en} } @article{InalChiappisiKoelschetal.2013, author = {Inal, Sahika and Chiappisi, Leonardo and K{\"o}lsch, Jonas D. and Kraft, Mario and Appavou, Marie-Sousai and Scherf, Ullrich and Wagner, Manfred and Hansen, Michael Ryan and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {117}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp408864s}, pages = {14576 -- 14587}, year = {2013}, abstract = {Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements.}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Chiappisi, Leonardo and Janietz, Dietmar and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers}, doi = {10.1039/C3TC31304B}, year = {2013}, abstract = {We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore.}, language = {en} } @article{InalKoelschSelrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Selrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, doi = {10.1039/c3tb21245a}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @article{KleinpeterMarsatHeydenreichetal.2011, author = {Kleinpeter, Erich and Marsat, Jean-No{\"e}l and Heydenreich, Matthias and von Berlepsch, Hans and Laschewsky, Andr{\´e}}, title = {Self-Assembly into Multicompartment Micelles and Selective Solubilization by Hydrophilic-Lipophilic- Fluorophilic Block Copolymers}, issn = {0024-9297}, year = {2011}, language = {en} } @article{StrehmelLaschewskyStoesseretal.2006, author = {Strehmel, Veronika and Laschewsky, Andr{\´e} and Stoesser, Reinhard and Zehl, Andrea and Herrmann, Werner}, title = {Mobility of spin probes in ionic liquids}, doi = {10.1002/poc.1072}, year = {2006}, abstract = {The spin probes TEMPO, TEMPOL, and CAT-1 were used to investigate microviscosity and micropolarity of imidazolium based ionic liquids bearing either tetrafluoroborate or hexafluorophosphate as anions and a variation of the substitution at the imidazolium ion. The average rotational correlation times (r) obtained by complete simulation of the X-band ESR spectra of TEMPO, TEMPOL, and CAT-1 increase with increasing viscosity of the ionic liquid although no Stokes Einstein behavior is observed. This is caused by microviscosity effects of the ionic liquids shown by application of the Gierer-Wirtz theory. Interestingly, the jump of the probe molecule into the free volume of the ionic liquids is a nonactivated process. The hyperfine coupling constants (A(iso) (N-14)) of TEMPO and TEMPOL dissolved in the ionic liquids do not depend on the structure of the ionic liquids. The A(iso) (N-14) values show a micropolarity of the ionic liquids that is comparable with methylenchloride in case of TEMPO and with dimethylsulfoxide in case of TEMPOL. Micropolarity monitored by CAT-1 strongly depends on structural variation of the ionic liquid. CAT-1 dissolved in imidazolium salts substituted with shorter alkyl chains at the nitrogen atom exhibits a micropolarity comparable with dimethylsulfoxide. A significant lower micropolarity is found for imidazolium. salts bearing a longer alkyl substituent at the nitrogen atom or a methyl substituent at C-2. Copyright (c) 2006 John Wiley \& Sons, Ltd}, language = {en} } @article{RullensVuillaumeMoussaetal.2006, author = {Rullens, F and Vuillaume, Pascal Y. and Moussa, Alain and Habib-Jiwan, Jean-Louis and Laschewsky, Andr{\´e}}, title = {Ordered polyelectrolyte "Multilayers". 7. Hybrid films self-assembled from fluorescent and smectogenic poly(diallylammonium) salts and delaminated clay}, doi = {10.1021/Cm060209x}, year = {2006}, abstract = {Homopolymers were prepared from diallylammonium monomers bearing 4-methylcoumarin and 4-cyanobiphenyl as fluorescent and mesogenic side groups, as well as their copolymers with diallyldimethylammonium chloride (DADMAC). Organic-inorganic hybrid films were electrostatically self-assembled via the layer-by-layer technique on silicon wafers and quartz plates from the chromophore-bearing polymers and an exfoliated synthetic hectorite. Photophysical studies performed in solution as well as in the self-assembled films demonstrated only a weak tendency for aggregation of the chromophores in the macromolecules. Moreover, assemblies made from the polymers carrying the cyanobiphenyl mesogen were found to exhibit a pronounced internal order}, language = {en} } @article{RullensLaschewskyDevillers2006, author = {Rullens, F and Laschewsky, Andr{\´e} and Devillers, M}, title = {Bulk and thin films of bismuth vanadates prepared from hybrid materials made from an organic polymer and inorganic salts}, doi = {10.1021/Cm051516q}, year = {2006}, abstract = {A new precursor route for the preparation of bulk oxides and thin films of bismuth vanadates is proposed. The method involves the thermal treatment under air and mild conditions of hybrid organic-inorganic precursors, made from a zwitterionic salt-free polymer matrix and selected inorganic species. Monoclinic BiVO4 was obtained in the form of bulk oxide by calcination of the powdered homogeneous hybrid materials at 600 degrees C, from precursors containing Bi and V in stoichiometric amounts. In the same way, thermodiffractometry studies performed on a hybrid material exhibiting a Bi/ V molar ratio of 2 revealed that the ionic conductor gamma-Bi4V2O11 phase can be stabilized under very soft thermal conditions (300 degrees C). Additionally, thin films of yellow monoclinic BiVO4 were for the first time fabricated, by thermal treatment of the same hybrid polymeric precursors deposited on quartz substrates by spin coating, using a layer- by-layer technique. The presence of the target phase at the surface of the plates was confirmed by X-ray diffraction as well as UV-vis measurements}, language = {en} } @article{HarmsRaetzkeFaupeletal.2010, author = {Harms, Stephan and Raetzke, Klaus and Faupel, Franz and Egger, Werner and Ravello, Lori Boyd de and Laschewsky, Andr{\´e} and Wang, Weinan and M{\"u}ller-Buschbaum, Peter}, title = {Free volume and swelling in thin films of poly(n-isopropylacrylamide) end-capped with n-butyltrithiocarbonate}, issn = {1022-1336}, doi = {10.1002/marc.201000067}, year = {2010}, abstract = {The free volume in thin films of poly(N-isopropylacrylamid) end-capped with n-butyltrio-carbonate (nbc-PNIPAM) is probed with positron annihilation lifetime spectroscopy (PALS). The PALS measurements are performed as function of energy to obtain depth profiles of the free volume of nbc-PNIPAM films. The range of nbc-PNIPAM films with thicknesses from 40 to 200 nm is focused. With decreasing film thickness the free volume increases in good agreement with an increase in the maximum swelling capability of the nbc-PNIPAM films. Thus in thin hydrogel films the sorption and swelling behavior is governed by free volume.}, language = {en} } @article{GlatzelBadiPaechetal.2010, author = {Glatzel, Stefan and Badi, Nezha and Paech, Michael and Laschewsky, Andr{\´e} and Lutz, Jean-Francois}, title = {Well-defined synthetic polymers with a protein-like gelation behavior in water}, issn = {1359-7345}, doi = {10.1039/C0cc00038h}, year = {2010}, abstract = {Homopolymers of N-acryloyl glycinamide were prepared by reversible addition-fragmentation chain transfer polymerization in water. The formed macromolecules exhibit strong polymer-polymer interactions in aqueous milieu and therefore form thermoreversible physical hydrogels in pure water, physiological buffer or cell medium.}, language = {en} } @article{FandrichFalkenhagenWeidneretal.2010, author = {Fandrich, Nick and Falkenhagen, Jana and Weidner, Steffen M. and Staal, Bastiaan and Thuenemann, Andreas F. and Laschewsky, Andr{\´e}}, title = {Characterization of new amphiphilic block copolymers of N-vinylpyrrolidone and vinyl acetate, 2-chromatographic separation and analysis by MALDI-TOF and FT-IR coupling}, issn = {1022-1352}, doi = {10.1002/macp.201000044}, year = {2010}, abstract = {PVP-block-PVAc block copolymers were synthesized by controlled radical polymerization applying a RAFT/MADIX system and were investigated by HPLC and by coupling of chromatography to FT-IR spectroscopy and MALDI-TOF MS. Chromatographic methods (LACCC and gradient techniques) were developed that allowed a separation of block copolymers according to their repeating units. The results of the spectroscopic and spectrometric analysis clearly showed transfer between radicals and process solvent. With the use of hyphenated techniques differences between main and side products were detected. In agreement with previously published results, obtained by NMR, SEC, static light scattering and MALDI- TOF MS, our data proved a non-ideal RAFT polymerization.}, language = {en} } @article{FandrichFalkenhagenWeidneretal.2010, author = {Fandrich, Nick and Falkenhagen, Jana and Weidner, Steffen M. and Pfeifer, Dietmar and Staal, Bastiaan and Thuenemann, Andreas F. and Laschewsky, Andr{\´e}}, title = {Characterization of new amphiphilic block copolymers of N-vinyl pyrrolidone and vinyl acetate, 1-analysis of copolymer composition, end groups, molar masses and molar mass distributions}, issn = {1022-1352}, doi = {10.1002/macp.200900466}, year = {2010}, abstract = {New amphiphilic block copolymers consisting of N-vinyl pyrrolidone and vinyl acetate were synthesized via controlled radical polymerization using a reversible addition/fragmentation chain transfer (RAFT)/macromolecular design via the interchange of xanthates (MADIX) system. The synthesis was carried out in 1,4-dioxane as process solvent. In order to get conclusions on the mechanism of the polymerization the molecular structure of formed copolymers was analysed by means of different analytical techniques. C-13 NMR spectroscopy was used for the determination of the monomer ratios. End groups were analysed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This technique was also used to determine possible fragmentations of the RAFT end groups. By means of a combination of size exclusion chromatography, C-13 NMR and static light scattering molar mass distributions and absolute molar masses could be analysed. The results clearly show a non-ideal RAFT mechanism.}, language = {en} } @article{BivigouKoumbaGoernitzLaschewskyetal.2010, author = {Bivigou Koumba, Achille Mayelle and Goernitz, Eckhard and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Thermoresponsive amphiphilic symmetrical triblock copolymers with a hydrophilic middle block made of poly(N- isopropylacrylamide) : synthesis, self-organization, and hydrogel formation}, issn = {0303-402X}, doi = {10.1007/s00396-009-2179-9}, year = {2010}, abstract = {Several series of symmetrical triblock copolymers were synthesized by the reversible addition fragmentation chain transfer method. They consist of a long block of poly(N-isopropylacrylamide) as hydrophilic, thermoresponsive middle block, which is end-capped by two small strongly hydrophobic blocks made from five different vinyl polymers. The association of the amphiphilic polymers was studied in dilute and concentrated aqueous solution. The polymer micelles found at low concentrations form hydrogels at high concentrations, typically above 30-35 wt.\%. Hydrogel formation and the thermosensitive rheological behavior were studied exemplarily for copolymers with hydrophobic blocks of polystyrene, poly(2-ethylhexyl acrylate), and poly(n-octadecyl acrylate). All systems exhibited a cloud point around 30 A degrees C. Heating beyond the cloud point initially favors hydrogel formation but continued heating results in macroscopic phase separation. The rheological behavior suggests that the copolymers associate into flower-like micelles, with only a small share of polymers that bridge the micelles and act as physical cross-linkers, even at high concentrations.}, language = {en} } @article{AdelsbergerKulkarniJainetal.2010, author = {Adelsberger, Joseph and Kulkarni, Amit and Jain, Abhinav and Wang, Weinan and Bivigou Koumba, Achille Mayelle and Busch, Peter and Pipich, Vitaliy and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Thermoresponsive PS-b-PNIPAM-b-PS micelles : aggregation behavior, segmental dynamics, and thermal response}, issn = {0024-9297}, doi = {10.1021/Ma902714p}, year = {2010}, abstract = {We have studied I lie thermal behavior of amphiphilic, symmetric triblock copolymers having short, deuterated polystyrene (PS) end blocks and a large poly(N-isopropylacrylarnicle) (PNIPAM) middle block exhibiting a lower critical solution temperature (LCST) in aqueous solution. A wide range of concentrations (0.1-300 mg/mL) is investigated using it number of analytical methods such as fluorescence correlation spectroscopy (FCS), turbidimetry, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and neutron spin-echo spectroscopy (NSE). The critical micelle concentration is determined using FCS to be 1 mu M or less. The collapse of the micelles at the LCST is investigated using turbidimetry and DLS and shows a weak dependence on the degree of polymerization of the PNIPAM block. SANS with contrast matching allows its to reveal the core-shell Structure of the micelles as well as their correlation as a function of temperature. The segmental dynamics of the PNIPAM shell are studied as a function of temperature and arc found to be faster in the collapsed state than in the swollen state. The mode detected has a linear dispersion in q(2) and is found to be faster in the collapsed state as compared to the swollen state. We attribute this result to the averaging over mobile and immobilized segments.}, language = {en} } @article{WischerhoffGlatzelUhligetal.2009, author = {Wischerhoff, Erik and Glatzel, Stefan and Uhlig, Katja and Lankenau, Andreas and Lutz, Jean-Francois and Laschewsky, Andr{\´e}}, title = {Tuning the thickness of polymer brushes grafted from nonlinearly growing multilayer assemblies}, issn = {0743-7463}, doi = {10.1021/La804197j}, year = {2009}, abstract = {A new versatile method for tuning the thickness of surface-tethered polymer brushes is introduced. It is based on the combination of polyelectrolyte multilayer deposition and surface-initiated atom transfer radical polymerization. To control the thickness of the brushes, the nonlinear growth of certain polyelectrolyte multilayer systems is exploited. The method is demonstrated to work with different polyelectrolytes and different monomers. The relevance for applications is demonstrated by cell adhesion experiments oil grafted thermoresponsive polymer layers with varying thickness.}, language = {en} } @article{vonBerlepschBoettcherSkrabaniaetal.2009, author = {von Berlepsch, Hans and Boettcher, Christoph and Skrabania, Katja and Laschewsky, Andr{\´e}}, title = {Complex domain architecture of multicompartment micelles from a linear ABC triblock copolymer revealed by cryogenic electron tomography}, issn = {1359-7345}, doi = {10.1039/B903658j}, year = {2009}, abstract = {Cryo-electron tomography of raspberry-like multicompartment micelles formed by a linear ABC triblock copolymer in water revealed that the fluorocarbon domains may be dispersed all over the hydrocarbon core.}, language = {en} } @article{SkrabaniaLaschewskyvonBerlepschetal.2009, author = {Skrabania, Katja and Laschewsky, Andr{\´e} and von Berlepsch, Hans and Boettcher, Christoph}, title = {Synthesis and micellar self-assembly of ternary hydrophilic-lipophilic-fluorophilic block copolymers with a linear PEO chain}, issn = {0743-7463}, doi = {10.1021/La900253j}, year = {2009}, abstract = {Linear amphiphilic diblock and ternary triblock copolymers were synthesized by the RAFT method in two successive steps using a poly(ethylene oxide) (PEO) macrochain transfer agent, butyl or 2-ethylhexyl acrylate, and 1H, 1H, 2H, 2H-perfluorodecyl acrylate. The diblock and the triblock copolymers, which consist of a hydrophilic, a lipophilic, and a short fluorophilic block, self-assemble in water into spherical micellar aggregates. Imaging by cryogenic transmission electron microscopy (cryo-TEM) revealed that the micellar cores of the aggregates made from these "triphilic" copolymers can undergo local phase separation to form a unique ultrastructure. In these multicompartment micelles, it appears that extended nonspherical domains, presumably made of nanocrystallites of the fluorocarbon block, are embedded in the hydrocarbon matrix forming the spherical micellar core. This novel internal structure of a micellar core is attributed to the mutual incompatibility of the fluorocarbon and hydrocarbon side chains in combination with the tendency of the used fluorocarbon acrylate monomer to undergo side-chain crystallization.}, language = {en} } @article{KoehlerDoenchOttetal.2009, author = {K{\"o}hler, Ralf and Doench, Ingo and Ott, Patrick and Laschewsky, Andr{\´e} and Fery, Andreas and Krastev, Rumen}, title = {Neutron reflectometry study of swelling of polyelectrolyte multilayers in water vapors : influence of charge density of the polycation}, issn = {0743-7463}, doi = {10.1021/La901508w}, year = {2009}, abstract = {We studied the swelling of polyelectrolyte (PE) multilayers (PEM) in water (H2O) vapors. The PEM were made from polyanion poly(styrene sulfonate) (PSS) and polycation poly(diallyldimethylammonium chloride)-N-methyl-N-vinylacetamide (pDADMAC-NMVA). While PSS is a fully charged polyanion, pDADMAC-NMVA is a random copolymer made of charged pDADMAC and uncharged NMVA monomer units. Variation of the relative amount of these two units allows for controlling the charge density of pDADMAC-NMVA. The degree of swelling was studied as it function of the relative humidity in the experimental chamber (respectively water concentration in the gas phase) for PEM prepared from PSS and pDADMAC-NMVA with their different charge densities - 100\%, 89\% and 75\%. The films were prepared by means of spraying technique and consisted of six PE couples-PSS/pDADMAC-NMVA. Neutron reflectometry was applied as main tool to observe the swelling process. The technique allows to obtain in a single experiment information about film thickness and amount of water in the film. The experiments were complemented with AFM measurements to obtain the thickness of the films. It was found that the Film thickness increases when the charge density of the polycation decreases. The swelling of the PEM increases with the relative humidity and it depends on the charge density of pDADMAC-NMVA. The swelling behavior is 2-fold, splitting up in a charge dependent mode with relatively little volume increase, and a second mode With high volume expansion, which is independent from charge density of PEM. The "swelling transition" occurs for all samples at a relative humidity about 60\% and a volume increase of ca. 20\%. The results were interpreted according to the Flory-Huggins theory which assumes a phase separation in PEM network at higher water contents.}, language = {en} } @article{BivigouKoumbaKristenLaschewskyetal.2009, author = {Bivigou Koumba, Achille Mayelle and Kristen, Juliane and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Synthesis of symmetrical triblock copolymers of styrene and N-isopropylacrylamide using bifunctional bis(trithiocarbonate)s as RAFT agents}, issn = {1022-1352}, doi = {10.1002/macp.200800575}, year = {2009}, abstract = {Six new bifunctional bis(trithiocarbonate)s were explored as RAFT agents for synthesizing amphiphilic triblock copolymers ABA and BAB, with hydrophilic "A" blocks made from N-isopropylacrylamide and hydrophobic "B" blocks made from styrene. Whereas the extension of poly(N-isopropylacrylamide) by styrene was not effective, polystyrene macroRAFT agents provided the block copolymers efficiently. End group analysis by H-1 NMR spectroscopy supported molar mass analysis and revealed an unexpected side reaction for certain bis(trithiocarbonate)s, namely a fragmentation to simple trithiocarbonates while extruding ethylene-trithiocarbonate. The amphiphilic block copolymers with short polystyrene blocks are directly soluble in water and self-organize into thermo-responsive micellar aggregates.}, language = {en} } @article{WangKaunePerlichetal.2010, author = {Wang, Weijia and Kaune, Gunar and Perlich, Jan and Paradakis, Christine M. and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Schlage, K. and R{\"o}hlsberger, Ralf and Roth, Stephan V. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Swelling and switching kinetics of gold coated end-capped poly(N-isopropylacrylamide) thin films}, issn = {0024-9297}, doi = {10.1021/Ma902637a}, year = {2010}, abstract = {Thin thermoresponsive hydrogel films of poly(N-isopropylacrylamide) end-capped with n-butyltrithiocarbonate(nbc- PNIPAM) oil si I icon supports with a gold layer on top, causing an asymmetric confinement, are investigated. For two different gold layer thicknesses (nominally 0.4 and 5 rim), the swelling and switching kinetics are probed with in situ neutron reflectivity. With a temperature jump from 23 to 40 degrees C the film is switched from a swollen into a collapsed state. For the thin gold layer this switching is faster as compared to the thick gold layer. The switching is a two-step process of water release and a subsequent structural relaxation. fit swelling and deswelling cycles, aging of the films is probed. After five cycles, the film exhibits enhanced water storage capacity. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that these gold coated nbc-PNIPAM films do not age with respect to the inner structure but slightly roughen at the gold surface. As revealed by atomic force microscopy, the morphology of the gold layer is changed by the water uptake and release.}, language = {en} }