@article{TeraoGarattiniRomaoetal.2020, author = {Terao, Mineko and Garattini, Enrico and Rom{\~a}o, Maria Jo{\~a}o and Leimk{\"u}hler, Silke}, title = {Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes}, series = {The journal of biological chemistry}, volume = {295}, journal = {The journal of biological chemistry}, number = {16}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Rockville}, issn = {0021-9258}, doi = {10.1074/jbc.REV119.007741}, pages = {5377 -- 5389}, year = {2020}, abstract = {Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.}, language = {en} } @article{KunstmannEngstroemWehleetal.2020, author = {Kunstmann, Ruth Sonja and Engstr{\"o}m, Olof and Wehle, Marko and Widmalm, G{\"o}ran and Santer, Mark and Barbirz, Stefanie}, title = {Increasing the affinity of an O-Antigen polysaccharide binding site in Shigella flexneri bacteriophage Sf6 tailspike protein}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202000495}, pages = {7263 -- 7273}, year = {2020}, abstract = {Broad and unspecific use of antibiotics accelerates spread of resistances. Sensitive and robust pathogen detection is thus important for a more targeted application. Bacteriophages contain a large repertoire of pathogen-binding proteins. These tailspike proteins (TSP) often bind surface glycans and represent a promising design platform for specific pathogen sensors. We analysed bacteriophage Sf6 TSP that recognizes the O-polysaccharide of dysentery-causing Shigella flexneri to develop variants with increased sensitivity for sensor applications. Ligand polyrhamnose backbone conformations were obtained from 2D H-1,H-1-trNOESY NMR utilizing methine-methine and methine-methyl correlations. They agreed well with conformations obtained from molecular dynamics (MD), validating the method for further predictions. In a set of mutants, MD predicted ligand flexibilities that were in good correlation with binding strength as confirmed on immobilized S. flexneri O-polysaccharide (PS) with surface plasmon resonance. In silico approaches combined with rapid screening on PS surfaces hence provide valuable strategies for TSP-based pathogen sensor design.}, language = {en} } @article{ThirumalaikumarGorkaSchulzetal.2020, author = {Thirumalaikumar, Venkatesh P. and Gorka, Michal and Schulz, Karina and Masclaux-Daubresse, Celine and Sampathkumar, Arun and Skirycz, Aleksandra and Vierstra, Richard D. and Balazadeh, Salma}, title = {Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1}, series = {Autophagy}, volume = {17}, journal = {Autophagy}, number = {9}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1554-8635}, doi = {10.1080/15548627.2020.1820778}, pages = {2184 -- 2199}, year = {2020}, abstract = {In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.}, language = {en} } @article{LeinsBanitzGrimmetal.2020, author = {Leins, Johannes A. and Banitz, Thomas and Grimm, Volker and Drechsler, Martin}, title = {High-resolution PVA along large environmental gradients to model the combined effects of climate change and land use timing}, series = {Ecological modelling : international journal on ecological modelling and systems ecology}, volume = {440}, journal = {Ecological modelling : international journal on ecological modelling and systems ecology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2020.109355}, pages = {15}, year = {2020}, abstract = {Both climate change and land use regimes affect the viability of populations, but they are often studied separately. Moreover, population viability analyses (PVAs) often ignore the effects of large environmental gradients and use temporal resolutions that are too coarse to take into account that different stages of a population's life cycle may be affected differently by climate change. Here, we present the High-resolution Large Environmental Gradient (HiLEG) model and apply it in a PVA with daily resolution based on daily climate projections for Northwest Germany. We used the large marsh grasshopper (LMG) as the target species and investigated (1) the effects of climate change on the viability and spatial distribution of the species, (2) the influence of the timing of grassland mowing on the species and (3) the interaction between the effects of climate change and grassland mowing. The stageand cohort-based model was run for the spatially differentiated environmental conditions temperature and soil moisture across the whole study region. We implemented three climate change scenarios and analyzed the population dynamics for four consecutive 20-year periods. Climate change alone would lead to an expansion of the regions suitable for the LMG, as warming accelerates development and due to reduced drought stress. However, in combination with land use, the timing of mowing was crucial, as this disturbance causes a high mortality rate in the aboveground life stages. Assuming the same date of mowing throughout the region, the impact on viability varied greatly between regions due to the different climate conditions. The regional negative effects of the mowing date can be divided into five phases: (1) In early spring, the populations were largely unaffected in all the regions; (2) between late spring and early summer, they were severely affected only in warm regions; (3) in summer, all the populations were severely affected so that they could hardly survive; (4) between late summer and early autumn, they were severely affected in cold regions; and (5) in autumn, the populations were equally affected across all regions. The duration and start of each phase differed slightly depending on the climate change scenario and simulation period, but overall, they showed the same pattern. Our model can be used to identify regions of concern and devise management recommendations. The model can be adapted to the life cycle of different target species, climate projections and disturbance regimes. We show with our adaption of the HiLEG model that high-resolution PVAs and applications on large environmental gradients can be reconciled to develop conservation strategies capable of dealing with multiple stressors.}, language = {en} } @article{HornBecherJohstetal.2020, author = {Horn, Juliane and Becher, Matthias A. and Johst, Karin and Kennedy, Peter J. and Osborne, Juliet L. and Radchuk, Viktoriia and Grimm, Volker}, title = {Honey bee colony performance affected by crop diversity and farmland structure}, series = {Ecological applications}, volume = {31}, journal = {Ecological applications}, number = {1}, publisher = {Wiley Periodicals LLC}, address = {Washington DC}, issn = {1939-5582}, doi = {10.1002/eap.2216}, pages = {1 -- 22}, year = {2020}, abstract = {Forage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics,P(H)andP(P,)which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower,P(H)andP(P)were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass-dandelion pasture, trefoil-grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, andP(H)(269.5 kg) andP(P)(108 kg) being above viability thresholds for 5 yr. Overall, trefoil-grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps.}, language = {en} } @article{WitzelAbuRishaAlbersetal.2020, author = {Witzel, Katja and Abu Risha, Marua and Albers, Philip and B{\"o}rnke, Frederik and Hanschen, Franziska S.}, title = {Corrigendum : Identification and characterization of three epithiospecifier protein isoforms in Brassica oleracea / Witzel, Katja; Abu Risha, Marua; Albers, Philip; B{\"o}rnke, Frederike; Hanschen, Franziska S. - Lausanne: Frontiers Media, 2019. - Frontiers in plant science : FPLS. - 10 (2019) art. 1552. - doi: 10.3389/fpls.2019.01552}, series = {Frontiers in plant science : FPLS}, volume = {11}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2020.00523}, pages = {2}, year = {2020}, language = {en} } @article{MasigolKhodaparastMostowfizadehGhalamfarsaetal.2020, author = {Masigol, Hossein and Khodaparast, Seyed Akbar and Mostowfizadeh-Ghalamfarsa, Reza and Rojas-Jimenez, Keilor and Woodhouse, Jason Nicholas and Neubauer, Darshan and Grossart, Hans-Peter}, title = {Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran}, series = {Aquatic Ecology}, volume = {54}, journal = {Aquatic Ecology}, number = {1}, publisher = {Springer Science}, address = {Dordrecht}, issn = {1573-5125}, doi = {10.1007/s10452-019-09745-w}, pages = {323 -- 336}, year = {2020}, abstract = {Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50\% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems.}, language = {en} } @article{MoradianRochLendleinetal.2020, author = {Moradian, Hanieh and Roch, Toralf and Lendlein, Andreas and Gossen, Manfred}, title = {mRNA transfection-induced activation of primary human monocytes and macrophages}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-60506-4}, pages = {1 -- 15}, year = {2020}, abstract = {Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications.}, language = {en} } @article{ObbardShiRobertsetal.2020, author = {Obbard, Darren J. and Shi, Mang and Roberts, Katherine E. and Longdon, Ben and Dennis, Alice B.}, title = {A new lineage of segmented RNA viruses infecting animals}, series = {Virus Evolution}, volume = {6}, journal = {Virus Evolution}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2057-1577}, doi = {10.1093/ve/vez061}, pages = {1 -- 10}, year = {2020}, abstract = {Metagenomic sequencing has revolutionised our knowledge of virus diversity, with new virus sequences being reported faster than ever before. However, virus discovery from metagenomic sequencing usually depends on detectable homology: without a sufficiently close relative, so-called 'dark' virus sequences remain unrecognisable. An alternative approach is to use virus-identification methods that do not depend on detecting homology, such as virus recognition by host antiviral immunity. For example, virus-derived small RNAs have previously been used to propose 'dark' virus sequences associated with the Drosophilidae (Diptera). Here, we combine published Drosophila data with a comprehensive search of transcriptomic sequences and selected meta-transcriptomic datasets to identify a completely new lineage of segmented positive-sense single-stranded RNA viruses that we provisionally refer to as the Quenyaviruses. Each of the five segments contains a single open reading frame, with most encoding proteins showing no detectable similarity to characterised viruses, and one sharing a small number of residues with the RNA-dependent RNA polymerases of single- and double-stranded RNA viruses. Using these sequences, we identify close relatives in approximately 20 arthropods, including insects, crustaceans, spiders, and a myriapod. Using a more conserved sequence from the putative polymerase, we further identify relatives in meta-transcriptomic datasets from gut, gill, and lung tissues of vertebrates, reflecting infections of vertebrates or of their associated parasites. Our data illustrate the utility of small RNAs to detect viruses with limited sequence conservation, and provide robust evidence for a new deeply divergent and phylogenetically distinct RNA virus lineage.}, language = {en} } @article{ZwaagHorstBlaženovićetal.2020, author = {Zwaag, Jelle and Horst, Rob ter and Blaženović, Ivana and St{\"o}ßel, Daniel and Ratter, Jacqueline and Worseck, Josephine M. and Schauer, Nicolas and Stienstra, Rinke and Netea, Mihai G. and Jahn, Dieter and Pickkers, Peter and Kox, Matthijs}, title = {Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system}, series = {Metabolites}, volume = {10}, journal = {Metabolites}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2218-1989}, doi = {10.3390/metabo10040148}, pages = {1 -- 18}, year = {2020}, abstract = {We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1 beta and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.}, language = {en} } @article{AmenNagelHedtetal.2020, author = {Amen, Rahma and Nagel, Rebecca and Hedt, Maximilian and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences}, series = {Evolutionary Ecology}, volume = {34}, journal = {Evolutionary Ecology}, number = {3}, publisher = {Springer Science}, address = {Dordrecht}, issn = {0269-7653}, doi = {10.1007/s10682-020-10043-3}, pages = {427 -- 437}, year = {2020}, abstract = {Under an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype-environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated.}, language = {en} } @article{MorenoRomeroProbstTrindadeetal.2020, author = {Moreno-Romero, Jordi and Probst, Aline V. and Trindade, In{\^e}s and Kalyanikrishna, and Engelhorn, Julia and Farrona, Sara}, title = {Looking At the Past and Heading to the Future}, series = {Frontiers in Plant Science}, volume = {10}, journal = {Frontiers in Plant Science}, number = {1795}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01795}, pages = {1 -- 12}, year = {2020}, abstract = {In June 2019, more than a hundred plant researchers met in Cologne, Germany, for the 6th European Workshop on Plant Chromatin (EWPC). This conference brought together a highly dynamic community of researchers with the common aim to understand how chromatin organization controls gene expression, development, and plant responses to the environment. New evidence showing how epigenetic states are set, perpetuated, and inherited were presented, and novel data related to the three-dimensional organization of chromatin within the nucleus were discussed. At the level of the nucleosome, its composition by different histone variants and their specialized histone deposition complexes were addressed as well as the mechanisms involved in histone post-translational modifications and their role in gene expression. The keynote lecture on plant DNA methylation by Julie Law (SALK Institute) and the tribute session to Lars Hennig, honoring the memory of one of the founders of the EWPC who contributed to promote the plant chromatin and epigenetic field in Europe, added a very special note to this gathering. In this perspective article we summarize some of the most outstanding data and advances on plant chromatin research presented at this workshop.}, language = {en} } @article{CaoTianAndreevetal.2020, author = {Cao, Xianyong and Tian, Fang and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Ni, Jian and Rudaya, Natalia and Stobbe, Astrid and Wieczorek, Mareike and Herzschuh, Ulrike}, title = {A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr}, series = {Earth System Science Data}, volume = {12}, journal = {Earth System Science Data}, number = {1}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-12-119-2020}, pages = {119 -- 135}, year = {2020}, abstract = {Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 \% of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 \% were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 \%) and lake sediments (33 \%). Most of the records (83 \%) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa.}, language = {en} } @article{FichtnerOlasFeiletal.2020, author = {Fichtner, Franziska and Olas, Justyna Jadwiga and Feil, Regina and Watanabe, Mutsumi and Krause, Ursula and Hoefgen, Rainer and Stitt, Mark and Lunn, John Edward}, title = {Functional features of Trehalose-6-Phosphate Synthase 1}, series = {The Plant Cell}, volume = {32}, journal = {The Plant Cell}, number = {6}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0032-0781}, doi = {10.1105/tpc.19.00837}, pages = {1949 -- 1972}, year = {2020}, abstract = {Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P.}, language = {en} } @article{WeiseAugeBaessleretal.2020, author = {Weise, Hanna and Auge, Harald and Baessler, Cornelia and B{\"a}rlund, Ilona and Bennett, Elena M. and Berger, Uta and Bohn, Friedrich and Bonn, Aletta and Borchardt, Dietrich and Brand, Fridolin and Jeltsch, Florian and Joshi, Jasmin Radha and Grimm, Volker}, title = {Resilience trinity}, series = {Oikos}, volume = {129}, journal = {Oikos}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0030-1299}, doi = {10.1111/oik.07213}, pages = {445 -- 456}, year = {2020}, abstract = {Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority.}, language = {en} } @article{GryzikHoangLischkeetal.2020, author = {Gryzik, Stefanie and Hoang, Yen and Lischke, Timo and Mohr, Elodie and Venzke, Melanie and Kadner, Isabelle and P{\"o}tzsch, Josephine and Groth, Detlef and Radbruch, Andreas and Hutloff, Andreas and Baumgrass, Ria}, title = {Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception}, series = {eLife}, volume = {9}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.53226}, pages = {21}, year = {2020}, abstract = {Dysregulated cytokine expression by T cells plays a pivotal role in the pathogenesis of autoimmune diseases. However, the identification of the corresponding pathogenic subpopulations is a challenge, since a distinction between physiological variation and a new quality in the expression of protein markers requires combinatorial evaluation. Here, we were able to identify a super-functional follicular helper T cell (Tfh)-like subpopulation in lupus-prone NZBxW mice with our binning approach "pattern recognition of immune cells (PRI)". PRI uncovered a subpopulation of IL-21(+) IFN-gamma(high) PD-1(low) CD40L(high) CXCR5(-) Bcl-6(-) T cells specifically expanded in diseased mice. In addition, these cells express high levels of TNF-alpha and IL-2, and provide B cell help for IgG production in an IL-21 and CD40L dependent manner. This super-functional T cell subset might be a superior driver of autoimmune processes due to a polyfunctional and high cytokine expression combined with Tfh-like properties.}, language = {en} } @article{YuanShengPreicketal.2020, author = {Yuan, Junxia and Sheng, Guilian and Preick, Michaela and Sun, Boyang and Hou, Xindong and Chen, Shungang and Taron, Ulrike Helene and Barlow, Axel and Wang, Linying and Hu, Jiaming and Deng, Tao and Lai, Xulong and Hofreiter, Michael}, title = {Mitochondrial genomes of Late Pleistocene caballine horses from China belong to a separate clade}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {250}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2020.106691}, pages = {8}, year = {2020}, abstract = {There were several species of Equus in northern China during the Late Pleistocene, including Equus przewalskii and Equus dalianensis. A number of morphological studies have been carried out on E. przewalskii and E. dalianensis, but their evolutionary history is still unresolved. In this study, we retrieved near-complete mitochondrial genomes from E. dalianensis and E. przewalskii specimens excavated from Late Pleistocene strata in northeastern China. Phylogenetic analyses revealed that caballoid horses were divided into two subclades: the New World and the Old World caballine horse subclades. The Old World caballine horses comprise of two deep phylogenetic lineages, with modern and ancient Equus caballus and modern E. przewalskii forming lineage I, and the individuals in this study together with one Yakut specimen forming lineage II. Our results indicate that Chinese Late Pleistocene caballoid horses showed a closer relationship to other Eurasian caballine horses than that to Pleistocene horses from North America. In addition, phylogenetic analyses suggested a close relationship between E. dalianensis and the Chinese fossil E. przewalskii, in agreement with previous researches based on morphological analyses. Interestingly, E. dalianensis and the fossil E. przewalskii were intermixed rather than split into distinct lineages, suggesting either that gene flow existed between these two species or that morphology-based species assignment of palaeontological specimens is not always correct. Moreover, Bayesian analysis showed that the divergence time between the New World and the Old World caballoid horses was at 1.02 Ma (95\% CI: 0.86-1.24 Ma), and the two Old World lineages (I \& II) split at 0.88 Ma (95\% CI: 0.69-1.13 Ma), which indicates that caballoid horses seem to have evolved into different populations in the Old World soon after they migrated from North America via the Bering Land Bridge. Finally, the TMRCA of E. dalianensis was estimated at 0.20 Ma (95\% CI: 0.15-0.28 Ma), and it showed a relative low genetic diversity compared with other Equus species.}, language = {en} } @article{BoteroMonkRodriguezCubillosetal.2020, author = {Botero, David and Monk, Jonathan and Rodriguez Cubillos, Maria Juliana and Rodriguez Cubillos, Andres Eduardo and Restrepo, Mariana and Bernal-Galeano, Vivian and Reyes, Alejandro and Gonzalez Barrios, Andres and Palsson, Bernhard O. and Restrepo, Silvia and Bernal, Adriana}, title = {Genome-scale metabolic model of Xanthomonas phaseoli pv. manihotis}, series = {Frontiers in genetics}, volume = {11}, journal = {Frontiers in genetics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-8021}, doi = {10.3389/fgene.2020.00837}, pages = {19}, year = {2020}, abstract = {Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)(+) balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.}, language = {en} } @article{NavazoOyhenartDahintenetal.2020, author = {Navazo, B{\´a}rbara and Oyhenart, Evelia and Dahinten, Silvia and Mumm, Rebekka and Scheffler, Christiane}, title = {Decrease of external skeletal robustness (Frame Index) between two cohorts of school children living in Puerto Madryn, Argentina at the beginning of the 21st century}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger}, volume = {77}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2020/1182}, pages = {405 -- 413}, year = {2020}, abstract = {Background: It has been shown that modern life style with reduced physical activity can lead to lower bone accumulation. Also a decline trend in external skeletal robustness in children and young adolescents, measured by the Frame Index (FI), seems to have a parallel trend with the increase in overweight and obesity. Based on these findings we estimate that likely, the FI should be changed after a decade in the Argentinean population as well as in others population of the world. Thereby, the aim of the present study was to describe, using the FI, the pattern of external skeletal robustness in school children aged 6-14 years from two cohorts of Argentina (Puerto Madryn, Chubut) and to compare them with the European reference (Czech Republic, Germany, Poland and Russia). Methods: Elbow breadth and height of Puerto Madryn school children were collected in two cross-sectional studies conducted between 2001-2006 (cohort 1 = C1) and 2014-2016 (cohort 2 = C2). Percentiles (P) values, for males and females, from C1 and C2 were calculated combining the LMSmethod and its extension. A t-test has been used to compare, by age and sex, the FI values between the Argentinean cohorts and the European reference (ER). Then, in order to know the percentage of the variation of the percentiles values between cohorts, as well as with ER, percent differences between means (PDM\%) were employed. Results: FI from Argentinean cohorts differed significantly from ER. Even more, C2 was not only smaller than ER, but also than C1. In males, C1-C2 showed significant differences at 6-8, 11 and 12 years and in females at all ages. Then, respect to ER each Argentinean cohort showed significant differences in males of C1 at 6, 12-14 years and in females at 6 and 11-14 years; and of C2, in both sexes, from 6 to 14 years. The PDM\% values for elbow breadth of male were negative in ER-C1 in all percentiles analyzed; in ER-C2 positive (P3 and P50) and negative (P97) and C1-C2 recorded positive values. In females, elbow breadth showed negative values for ER-C1 (P50 and P97), and positive for the remaining values. Finally, height registered, in both sexes, negative values in ER-C1 (except P97 in females), ER-C2 and C1-C2. Conclusions: After ten years of the first study carried on in Puerto Madryn, school children show a negative trend in the external skeletal robustness. Additionally, the children of both Argentinean cohorts have lower values compared to the European reference, and mainly the actual cohort. This situation would be explained, in part, by the progressive increase over time of overweight and obesity as consequence, among others, of the change in the quantity and/or quality of the food that children have access to and with the physical activity they do at school and outside.}, language = {en} } @article{DeCahsanNagelSchedinaetal.2020, author = {De Cahsan, Binia and Nagel, Rebecca and Schedina, Ina-Maria and King, James J. and Bianco, Pier G. and Tiedemann, Ralph and Ketmaier, Valerio}, title = {Phylogeography of the European brook lamprey (Lampetra planeri) and the European river lamprey (Lampetra fluviatilis) species pair based on mitochondrial data}, series = {Journal of fish biology}, volume = {96}, journal = {Journal of fish biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0022-1112}, doi = {10.1111/jfb.14279}, pages = {905 -- 912}, year = {2020}, abstract = {The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity.}, language = {en} } @article{RilligBielcikChaudharyetal.2020, author = {Rillig, Matthias C. and Bielcik, Milos and Chaudhary, Veer Bala and Gr{\"u}nfeld, Leonie and Maass, Stefanie and Mansour, India and Ryo, Masahiro and Veresoglou, Stavros D.}, title = {Ten simple rules for increased lab resilience}, series = {PLoS Computational Biology : a new community journal}, volume = {16}, journal = {PLoS Computational Biology : a new community journal}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1008313}, pages = {5}, year = {2020}, abstract = {When running a lab we do not think about calamities, since they are rare events for which we cannot plan while we are busy with the day-to-day management and intellectual challenges of a research lab. No lab team can be prepared for something like a pandemic such as COVID-19, which has led to shuttered labs around the globe. But many other types of crises can also arise that labs may have to weather during their lifetime. What can researchers do to make a lab more resilient in the face of such exterior forces? What systems or behaviors could we adjust in 'normal' times that promote lab success, and increase the chances that the lab will stay on its trajectory? We offer 10 rules, based on our current experiences as a lab group adapting to crisis.}, language = {en} } @article{NovinaHermanussenScheffleretal.2020, author = {Novina, Novina and Hermanussen, Michael and Scheffler, Christiane and Pulungan, Aman B. and Ismiarto, Yoyos Dias and Andriyana, Yudhie and Biben, Vitriana and Setiabudiawan, Budi}, title = {Indonesian National Growth Reference Charts better reflect height and weight of children in West Java, Indonesia, than WHO Child Growth Standards}, series = {Journal of Clinical Research in Pediatric Endocrinology}, volume = {12}, journal = {Journal of Clinical Research in Pediatric Endocrinology}, number = {4}, publisher = {Galenos Yayincilik}, address = {Istanbul}, issn = {1308-5727}, doi = {10.4274/jcrpe.galenos.2020.2020.0044}, pages = {410 -- 419}, year = {2020}, abstract = {Objective: The Indonesia Basic Health Research 2018 indicates that Indonesian children are still among the shortest in the world. When referred to World Health Organization Child Growth Standards (WHOCGS), the prevalence of stunting reaches up to 43\% in several Indonesian districts. Indonesian National Growth Reference Charts (INGRC) were established in order to better distinguish between healthy short children and children with growth disorders. We analyzed height and weight measurements of healthy Indonesian children using INGRC and WHOCGS. Methods: 6972 boys and 5800 girls (n = 12,772), aged 0-59 months old, from Bandung District were measured. Z-scores of length/height and body mass index were calculated based on INGRC and WHOCGS. Results: Under 5-year-old Indonesian children raised in Bandung are short and slim. Mean height z-scores of boys is -2.03 [standard deviation (SD) 1.31], mean height z-scores of girls is -2.03 (SD 1.31) when referred to WHOCGS indicating that over 50 \% of these children are stunted. Bandung children are heterogeneous, with substantial subpopulations of tall children. Depending on the growth reference used, between 9\% and 15\% of them are wasted. Wasted children are on average half a SD taller than their peers. Conclusion: WHOCGS seriously overestimates the true prevalence of undernutrition in Indonesian children. The present investigation fails to support evidence of undernutrition at a prevalence similar to the over 50\% prevalence of stunting (WHOCGS) versus 13.3\% (INGRC). We suggest refraining from using WHOCGS, and instead applying INGRC that closely mirror height and weight increments in Bandung children. INGRC appear superior for practical and clinical purposes, such as detecting growth and developmental disorders.}, language = {en} } @article{NawazKhanNoacketal.2020, author = {Nawaz, Shiza and Khan, Muhammad Moman and Noack, Jonas and Awan, Asad Bashir and Schiebel, Juliane and Roggenbuck, Dirk and Schierack, Peter and Sarwar, Yasra and Ali, Aamir}, title = {Rapid detection of biofilm formation by zoonotic serovars of Salmonella enterica and avian pathogenic E. coli isolates from poultry}, series = {Pakistan veterinary journal}, volume = {40}, journal = {Pakistan veterinary journal}, number = {4}, publisher = {University of Agriculture, Faculty of Veterinary Science}, address = {Faisalabad}, issn = {0253-8318}, doi = {10.29261/pakvetj/2020.066}, pages = {527 -- 530}, year = {2020}, abstract = {Biofilms are complex, sessile microbial communities that are problematic in clinical settings due to their association with survival and pathogenicity of bacteria. The biofilm formation supporting conditions for zoonotic serovars of Salmonella and avian pathogenic E. coli (APEC) from poultry have not been well studied yet. Clinical isolates of zoonotic Salmonella and APEC from poultry were evaluated for biofilm formation in four media at 37 degrees C and 40 degrees C after incubation of 48 and 72 hrs. The biofilms formed in 96 well plates were visualized and quantified with a new module of Aklides system using fluorescence microscope coupled with automated VideoScan Technology. After 72 hrs, brain heart infusion at 40 degrees C and Rappaport-Vassiliadis Soya broth at 37 degrees C were found most suitable for APEC and Salmonella biofilm formations respectively. The new information will be useful for further biofilm associated studies particularly for evaluation of antibiofilm compounds and contribute in infection control. (C) 2020 PVJ. All rights reserved}, language = {en} } @article{PremierFickelHeurichetal.2020, author = {Premier, Joseph and Fickel, J{\"o}rns and Heurich, Marco and Kramer-Schadt, Stephanie}, title = {The boon and bane of boldness}, series = {Movement Ecology}, volume = {8}, journal = {Movement Ecology}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-020-00204-y}, pages = {1 -- 17}, year = {2020}, abstract = {Background: Many felid species are of high conservation concern, and with increasing human disturbance the situation is worsening. Small isolated populations are at risk of genetic impoverishment decreasing within-species biodiversity. Movement is known to be a key behavioural trait that shapes both demographic and genetic dynamics and affects population survival. However, we have limited knowledge on how different manifestations of movement behaviour translate to population processes. In this study, we aimed to 1) understand the potential effects of movement behaviour on the genetic diversity of small felid populations in heterogeneous landscapes, while 2) presenting a simulation tool that can help inform conservation practitioners following, or considering, population management actions targeting the risk of genetic impoverishment. Methods: We developed a spatially explicit individual-based population model including neutral genetic markers for felids and applied this to the example of Eurasian lynx. Using a neutral landscape approach, we simulated reintroductions into a three-patch system, comprising two breeding patches separated by a larger patch of differing landscape heterogeneity, and tested for the effects of various behavioural movement syndromes and founder population sizes. We explored a range of movement syndromes by simulating populations with various movement model parametrisations that range from 'shy' to 'bold' movement behaviour. Results: We find that movement syndromes can lead to a higher loss of genetic diversity and an increase in between population genetic structure for both "bold" and "shy" movement behaviours, depending on landscape conditions, with larger decreases in genetic diversity and larger increases in genetic differentiation associated with bold movement syndromes, where the first colonisers quickly reproduce and subsequently dominate the gene pool. In addition, we underline the fact that a larger founder population can offset the genetic losses associated with subpopulation isolation and gene pool dominance. Conclusions We identified a movement syndrome trade-off for population genetic variation, whereby bold-explorers could be saviours - by connecting populations and promoting panmixia, or sinks - by increasing genetic losses via a 'founder takes all' effect, whereas shy-stayers maintain a more gradual genetic drift due to their more cautious behaviour. Simulations should incorporate movement behaviour to provide better projections of long-term population viability and within-species biodiversity, which includes genetic diversity. Simulations incorporating demographics and genetics have great potential for informing conservation management actions, such as population reintroductions or reinforcements. Here, we present such a simulation tool for solitary felids.}, language = {en} } @article{SchellenbergReichertHardtetal.2020, author = {Schellenberg, Johannes and Reichert, Jessica and Hardt, Martin and Klingelh{\"o}fer, Ines and Morlock, Gertrud and Schubert, Patrick and Bižić, Mina and Grossart, Hans-Peter and K{\"a}mpfer, Peter and Wilke, Thomas and Glaeser, Stefanie P.}, title = {The bacterial microbiome of the long-term aquarium cultured high-microbial abundance sponge Haliclona cnidata}, series = {Frontiers in Marine Science}, volume = {7}, journal = {Frontiers in Marine Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-7745}, doi = {10.3389/fmars.2020.00266}, pages = {20}, year = {2020}, abstract = {Marine sponges host highly diverse but specific bacterial communities that provide essential functions for the sponge holobiont, including antimicrobial defense. Here, we characterized the bacterial microbiome of the marine sponge Haliclona cnidata that has been in culture in an artificial marine aquarium system. We tested the hypotheses (1) that the long-term aquarium cultured sponge H. cnidata is tightly associated with a typical sponge bacterial microbiota and (2) that the symbiotic Bacteria sustain bioactivity under harmful environmental conditions to facilitate holobiont survival by preventing pathogen invasion. Microscopic and phylogenetic analyses of the bacterial microbiota revealed that H. cnidata represents a high microbial abundance (HMA) sponge with a temporally stable bacterial community that significantly shifts with changing aquarium conditions. A 4-week incubation experiment was performed in small closed aquarium systems with antibiotic and/or light exclusion treatments to reduce the total bacterial and photosynthetically active sponge-associated microbiota to a treatment-specific resilient community. While the holobiont was severely affected by the experimental treatment (i.e., bleaching of the sponge, reduced bacterial abundance, shifted bacterial community composition), the biological defense and bacterial community interactions (i.e., quorum sensing activity) remained intact. 16S rRNA gene amplicon sequencing revealed a resilient community of 105 bacterial taxa, which remained in the treated sponges. These 105 taxa accounted for a relative abundance of 72-83\% of the bacterial sponge microbiota of non-treated sponge fragments that have been cultured under the same conditions. We conclude that a sponge-specific resilient community stays biologically active under harmful environmental conditions, facilitating the resilience of the holobiont. In H. cnidata, bacteria are located in bacteriocytes, which may have contributed to the observed phenomenon.}, language = {en} } @article{KappelIllingHuuetal.2020, author = {Kappel, Christian and Illing, Nicola and Huu, Cuong Nguyen and Barger, Nichole N. and Cramer, Michael D. and Lenhard, Michael and Midgley, Jeremy J.}, title = {Fairy circles in Namibia are assembled from genetically distinct grasses}, series = {Communications biology}, volume = {3}, journal = {Communications biology}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2399-3642}, doi = {10.1038/s42003-020-01431-0}, pages = {8}, year = {2020}, abstract = {Fairy circles are striking regularly sized and spaced, bare circles surrounded by Stipagrostis grasses that occur over thousands of square kilometres in Namibia. The mechanisms explaining their origin, shape, persistence and regularity remain controversial. One hypothesis for the formation of vegetation rings is based on the centrifugal expansion of a single individual grass plant, via clonal growth and die-back in the centre. Clonality could explain FC origin, shape and long-term persistence as well as their regularity, if one clone competes with adjacent clones. Here, we show that for virtually all tested fairy circles the periphery is not exclusively made up of genetically identical grasses, but these peripheral grasses belong to more than one unrelated genet. These results do not support a clonal explanation for fairy circles. Lack of clonality implies that a biological reason for their origin, shape and regularity must emerge from competition between near neighbor individuals within each fairy circle. Such lack of clonality also suggests a mismatch between longevity of fairy circles versus their constituent plants. Furthermore, our findings of lack of clonality have implications for some models of spatial patterning of fairy circles that are based on self-organization. Christian Kappel et al. examine the genetic composition of fairy circles, regular circular patterns of grasses in the Namib Desert, using ddRAD-seq. They find that these grasses are made up of multiple unrelated genets rather than genetically identical grasses, suggesting non-clonality.}, language = {en} } @article{desAulnoisReveillonRobertetal.2020, author = {des Aulnois, Maxime Georges and R{\´e}veillon, Damien and Robert, Elise and Caruana, Amandine and Briand, Enora and Guljamow, Arthur and Dittmann, Elke and Amzil, Zouher and Bormans, Myriam}, title = {Salt shock responses of Microcystis revealed through physiological, transcript, and metabolomic analyses}, series = {Toxins}, volume = {12}, journal = {Toxins}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6651}, doi = {10.3390/toxins12030192}, pages = {18}, year = {2020}, abstract = {The transfer of Microcystis aeruginosa from freshwater to estuaries has been described worldwide and salinity is reported as the main factor controlling the expansion of M. aeruginosa to coastal environments. Analyzing the expression levels of targeted genes and employing both targeted and non-targeted metabolomic approaches, this study investigated the effect of a sudden salt increase on the physiological and metabolic responses of two toxic M. aeruginosa strains separately isolated from fresh and brackish waters, respectively, PCC 7820 and 7806. Supported by differences in gene expressions and metabolic profiles, salt tolerance was found to be strain specific. An increase in salinity decreased the growth of M. aeruginosa with a lesser impact on the brackish strain. The production of intracellular microcystin variants in response to salt stress correlated well to the growth rate for both strains. Furthermore, the release of microcystins into the surrounding medium only occurred at the highest salinity treatment when cell lysis occurred. This study suggests that the physiological responses of M. aeruginosa involve the accumulation of common metabolites but that the intraspecific salt tolerance is based on the accumulation of specific metabolites. While one of these was determined to be sucrose, many others remain to be identified. Taken together, these results provide evidence that M. aeruginosa is relatively salt tolerant in the mesohaline zone and microcystin (MC) release only occurs when the capacity of the cells to deal with salt increase is exceeded.}, language = {en} } @article{HempelAdolphsLandwehretal.2020, author = {Hempel, Sabrina and Adolphs, Julian and Landwehr, Niels and Janke, David and Amon, Thomas}, title = {How the selection of training data and modeling approach affects the estimation of ammonia emissions from a naturally ventilated dairy barn—classical statistics versus machine learning}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12031030}, pages = {18}, year = {2020}, abstract = {Environmental protection efforts can only be effective in the long term with a reliable quantification of pollutant gas emissions as a first step to mitigation. Measurement and analysis strategies must permit the accurate extrapolation of emission values. We systematically analyzed the added value of applying modern machine learning methods in the process of monitoring emissions from naturally ventilated livestock buildings to the atmosphere. We considered almost 40 weeks of hourly emission values from a naturally ventilated dairy cattle barn in Northern Germany. We compared model predictions using 27 different scenarios of temporal sampling, multiple measures of model accuracy, and eight different regression approaches. The error of the predicted emission values with the tested measurement protocols was, on average, well below 20\%. The sensitivity of the prediction to the selected training dataset was worse for the ordinary multilinear regression. Gradient boosting and random forests provided the most accurate and robust emission value predictions, accompanied by the second-smallest model errors. Most of the highly ranked scenarios involved six measurement periods, while the scenario with the best overall performance was: One measurement period in summer and three in the transition periods, each lasting for 14 days.}, language = {en} } @article{ApanasewiczGrothScheffleretal.2020, author = {Apanasewicz, Anna and Groth, Detlef and Scheffler, Christiane and Hermanussen, Michael and Piosek, Magdalena and Wychowaniec, Patrycja and Babiszewska, Magdalena and Barbarska, Olga and Ziomkiewicz, Anna}, title = {Traumatized women's infants are bigger than children of mothers without traumas}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger}, volume = {77}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger}, number = {5}, publisher = {Schweizerbart science publishers}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2020/1285}, pages = {359 -- 374}, year = {2020}, abstract = {Life history theory predicts that experiencing stress during the early period of life will result in accelerated growth and earlier maturation. Indeed, animal and some human studies documented a faster pace of growth in the offspring of stressed mothers. Recent advances in epigenetics suggest that the effects of early developmental stress might be passed across the generations. However, evidence for such intergenerational transmission is scarce, at least in humans. Here we report the results of the study investigating the association between childhood trauma in mothers and physical growth in their children during the first months of life. Anthropometric and psychological data were collected from 99 mothers and their exclusively breastfed children at the age of 5 months. The mothers completed the Early Life Stress Questionnaire to assess childhood trauma. The questionnaire includes questions about the most traumatic events that they had experienced before the age of 12 years. Infant growth was evaluated based on the anthropometric measurements of weight, length, and head circumference. Also, to control for the size of maternal investment, the composition of breast milk samples taken at the time of infant anthropometric measurements was investigated. The children of mothers with higher early life stress tended to have higher weight and bigger head circumference. The association between infant anthropometrics and early maternal stress was not affected by breast milk composition, suggesting that the effect of maternal stress on infant growth was independent of the size of maternal investment. Our results demonstrate that early maternal trauma may affect the pace of growth in the offspring and, in consequence, lead to a faster life history strategy. This effect might be explained via changes in offspring epigenetics.}, language = {en} } @article{XiaoLiuWangetal.2020, author = {Xiao, Shangbin and Liu, Liu and Wang, Wei and Lorke, Andreas and Woodhouse, Jason Nicholas and Grossart, Hans-Peter}, title = {A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water}, series = {Hydrology and earth system sciences : HESS}, volume = {24}, journal = {Hydrology and earth system sciences : HESS}, number = {7}, publisher = {European Geosciences Union (EGU) ; Copernicus}, address = {Munich}, issn = {1027-5606}, doi = {10.5194/hess-24-3871-2020}, pages = {3871 -- 3880}, year = {2020}, abstract = {Biogenic greenhouse gas emissions, e.g., of methane (CH4) and carbon dioxide (CO2) from inland waters, contribute substantially to global warming. In aquatic systems, dissolved greenhouse gases are highly heterogeneous in both space and time. To better understand the biological and physical processes that affect sources and sinks of both CH4 and CO2, their dissolved concentrations need to be measured with high spatial and temporal resolution. To achieve this goal, we developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved CH4 and CO2 concentrations at the water surface and in the water column. FaRAGE can achieve an exceptionally short response time (t(95\%) = 12 s when including the response time of the gas analyzer) while retaining an equilibration ratio of 62.6\% and a measurement accuracy of 0.5\% for CH4. A similar performance was observed for dissolved CO2 (t(95\%) = 10 s, equilibration ratio 67.1 \%). An equilibration ratio as high as 91.8\% can be reached at the cost of a slightly increased response time (16 s). The FaRAGE is capable of continuously measuring dissolved CO2 and CH4 concentrations in the nM-to-submM (10(-9)-10(-3) mol L-1) range with a detection limit of subnM (10(-10) mol L-1), when coupling with a cavity ring-down greenhouse gas analyzer (Picarro GasScouter). FaRAGE allows for the possibility of mapping dissolved concentration in a "quasi" three-dimensional manner in lakes and provides an inexpensive alternative to other commercial gas equilibrators. It is simple to operate and suitable for continuous monitoring with a strong tolerance for suspended particles. While the FaRAGE is developed for inland waters, it can be also applied to ocean waters by tuning the gas-water mixing ratio. The FaRAGE is easily adapted to suit other gas analyzers expanding the range of potential applications, including nitrous oxide and isotopic composition of the gases.}, language = {en} } @article{ColeLiddleConsolandietal.2020, author = {Cole, Matthew and Liddle, Corin and Consolandi, Giulia and Drago, Claudia and Hird, Cameron and Lindeque, Penelope Kate and Galloway, Tamara S.}, title = {Microplastics, microfibres and nanoplastics cause variable sub-lethal responses in mussels (Mytilus spp.)}, series = {Marine pollution bulletin : the international journal for marine environmental scientists, engineers, administrators, politicians and lawyers}, volume = {160}, journal = {Marine pollution bulletin : the international journal for marine environmental scientists, engineers, administrators, politicians and lawyers}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0025-326X}, doi = {10.1016/j.marpolbul.2020.111552}, pages = {10}, year = {2020}, abstract = {We compare the toxicity of microplastics, microfibres and nanoplastics on mussels. Mussels (Mytilus spp.) were exposed to 500 ng mL(-1) of 20 mu m polystyrene microplastics, 10 x 30 mu m polyamide microfibres or 50 nm polystyrene nanoplastics for 24 h or 7 days. Biomarkers of immune response, oxidative stress response, lysosomal destabilisation and genotoxic damage were measured in haemolymph, digestive gland and gills. Microplastics and microfibres were observed in the digestive glands, with significantly higher plastic concentrations after 7-days exposure (ANOVA, P < 0.05). Nanoplastics had a significant effect on hyalinocytegranulocyte ratios (ANOVA, P < 0.05), indicative of a heightened immune response. SOD activity was significantly increased followed 24 h exposure to plastics (two-way ANOVA, P < 0.05), but returned to normal levels after 7-days exposure. No evidence of lysosomal destabilisation or genotoxic damage was observed from any form of plastic. The study highlights how particle size is a key factor in plastic particulate toxicity.}, language = {en} } @article{LauxWengerBieretal.2020, author = {Laux, Eva-Maria and Wenger, Christian and Bier, Frank Fabian and Hoelzel, Ralph}, title = {AC electrokinetic immobilization of organic dye molecules}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, number = {16}, publisher = {Springer}, address = {Berlin}, issn = {1618-2642}, doi = {10.1007/s00216-020-02480-4}, pages = {3859 -- 3870}, year = {2020}, abstract = {The application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule's functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.e., to the electrode tips and edges. In addition to dielectrophoresis and AC electrokinetic flow, molecular scale interactions and electrophoresis at short time scales are discussed as further mechanisms leading to migration and immobilization of the molecules.}, language = {en} } @article{GuerreroFickelBenhaiemetal.2020, author = {Guerrero, Tania P. and Fickel, J{\"o}rns and Benhaiem, Sarah and Weyrich, Alexandra}, title = {Epigenomics and gene regulation in mammalian social systems}, series = {Current zoology}, volume = {66}, journal = {Current zoology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-5507}, doi = {10.1093/cz/zoaa005}, pages = {307 -- 319}, year = {2020}, abstract = {Social epigenomics is a new field of research that studies how the social environment shapes the epigenome and how in turn the epigenome modulates behavior. We focus on describing known gene-environment interactions (GEIs) and epigenetic mechanisms in different mammalian social systems. To illustrate how epigenetic mechanisms integrate GEls, we highlight examples where epigenetic mechanisms are associated with social behaviors and with their maintenance through neuroendocrine, locomotor, and metabolic responses. We discuss future research trajectories and open questions for the emerging field of social epigenomics in nonmodel and naturally occurring social systems. Finally, we outline the technological advances that aid the study of epigenetic mechanisms in the establishment of GEIs and vice versa.}, language = {en} } @article{KruseKolmogorovPestryakovaetal.2020, author = {Kruse, Stefan and Kolmogorov, Aleksey I. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {18}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.6660}, pages = {10017 -- 10030}, year = {2020}, abstract = {The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76\%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures.}, language = {en} } @article{GuoSchwitallaBenndorfetal.2020, author = {Guo, Huijuan and Schwitalla, Jan W. and Benndorf, Ren{\´e} and Baunach, Martin and Steinbeck, Christoph and G{\"o}rls, Helmar and de Beer, Z. Wilhelm and Regestein, Lars and Beemelmanns, Christine}, title = {Gene cluster activation in a bacterial symbiont leads to halogenated angucyclic maduralactomycins and spirocyclic actinospirols}, series = {Organic letters}, volume = {22}, journal = {Organic letters}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1523-7060}, doi = {10.1021/acs.orglett.0c00601}, pages = {2634 -- 2638}, year = {2020}, abstract = {Growth from spores activated a biosynthetic gene cluster in Actinomadura sp. RB29, resulting in the identification of two novel groups of halogenated polyketide natural products, named maduralactomycins and actinospirols. The unique tetracyclic and spirocyclic structures were assigned based on a combination of NMR analysis, chemoinformatic calculations, X-ray crystallography, and C-13 labeling studies. On the basis of HRMS2 data, genome mining, and gene expression studies, we propose an underlying noncanonical angucycline biosynthesis and extensive post-polyketide synthase (PKS) oxidative modifications.}, language = {en} } @article{ZiegeHermannKriestenetal.2020, author = {Ziege, Madlen and Hermann, Bernd Timo and Kriesten, Stefanie and Merker, Stefan and Ullmann, Wiebke and Streit, Bruno and Wenninger, Sandra and Plath, Martin}, title = {Ranging behavior of European rabbits (Oryctolagus cuniculus) in urban and suburban landscapes}, series = {Mammal research / Mammal Research Institute, Polish Academy of Sciences}, volume = {65}, journal = {Mammal research / Mammal Research Institute, Polish Academy of Sciences}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {2199-2401}, doi = {10.1007/s13364-020-00490-2}, pages = {607 -- 614}, year = {2020}, abstract = {Various mammals, particularly carnivores, reportedly establish smaller home ranges in urban compared with rural areas. This may be because urban environments provide optimal resources within a small area, negating the requirement to range further, or because habitat fragmentation constrains ranging behavior. Comparable information on urban populations of herbivorous mammalian species (such as European rabbits) is scarce. To fill this knowledge gap, we radio-tracked 13 individuals (seven females and six males) equipped with radio collars in a suburban and an urban study site in the city of Frankfurt am Main in Germany during the reproductive season (March to September) of 2012. The study sites differed in levels of habitat fragmentation. We report the smallest home ranges ever described for this species, with mean 95\% minimum convex polygons (MCPs) covering 0.50 ha, while no consistent differences between sites were uncovered. We occasionally tracked individuals crossing streets underground (in burrows), suggesting that streets may restrict the ranging behavior of rabbits-and possibly other burrowing species-to a much lesser extent than previously thought. We conclude that heterogeneous landscape structures, made up of a diverse mosaic of buildings, parks, and gardens, provide sufficient food and shelter in close proximity to burrows at both study sites. Therefore, our data support the hypothesis that optimal resources constrain ranges in this case rather than habitat fragmentation.}, language = {en} } @article{BarlowHartmannGonzalezetal.2020, author = {Barlow, Axel and Hartmann, Stefanie and Gonzalez, Javier and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Consensify}, series = {Genes / Molecular Diversity Preservation International}, volume = {11}, journal = {Genes / Molecular Diversity Preservation International}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes11010050}, pages = {22}, year = {2020}, abstract = {A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes.}, language = {en} } @article{LehmannZhengRyoetal.2020, author = {Lehmann, Anika and Zheng, Weishuang and Ryo, Masahiro and Soutschek, Katharina and Roy, Julien and Rongstock, Rebecca and Maaß, Stefanie and Rillig, Matthias C.}, title = {Fungal traits important for soil aggregation}, series = {Frontiers in microbiology}, volume = {10}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02904}, pages = {13}, year = {2020}, abstract = {Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of soils and soil biota. Among them, filamentous saprobic fungi have well-documented effects on soil aggregation. However, it is unclear what properties, or traits, determine the overall positive effect of fungi on soil aggregation. To achieve progress, it would be helpful to systematically investigate a broad suite of fungal species for their trait expression and the relation of these traits to soil aggregation. Here, we apply a trait-based approach to a set of 15 traits measured under standardized conditions on 31 fungal strains including Ascomycota, Basidiomycota, and Mucoromycota, all isolated from the same soil. We find large differences among these fungi in their ability to aggregate soil, including neutral to positive effects, and we document large differences in trait expression among strains. We identify biomass density, i.e., the density with which a mycelium grows (positive effects), leucine aminopeptidase activity (negative effects) and phylogeny as important factors explaining differences in soil aggregate formation (SAF) among fungal strains; importantly, growth rate was not among the important traits. Our results point to a typical suite of traits characterizing fungi that are good soil aggregators, and our findings illustrate the power of employing a trait-based approach to unravel biological mechanisms underpinning soil aggregation. Such an approach could now be extended also to other soil biota groups. In an applied context of restoration and agriculture, such trait information can inform management, for example to prioritize practices that favor the expression of more desirable fungal traits.}, language = {en} } @article{LanghammerGrimm2020, author = {Langhammer, Maria and Grimm, Volker}, title = {Mitigating bioenergy-driven biodiversity decline}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {416}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2019.108914}, pages = {13}, year = {2020}, abstract = {The cultivation of energy crops leads to direct and indirect land use changes that impair the biodiversity of the agricultural landscape. In our study, we analyse the effects of mitigation measures on the European brown hare (Lepus europaeus), which is directly affected by ongoing land use change and has experienced widespread decline throughout Europe since the 1960s. Therefore, we developed a spatially explicit and individual-based ecological model to study the effects of different landscape configurations and compositions on hare population development. As an input, we used two 4 x 4 km large model landscapes, which were generated by a landscape generator based on real field sizes and crop proportions and differed in average field size and crop composition. The crops grown annually are evaluated in terms of forage suitability, breeding suitability and crop richness for the hare. In six mitigation scenarios, we investigated the effects of a 10 \% increase in the following measures: (1) mixed silphie, (2) miscanthus, (3) grass-clover ley, (4) alfalfa, (5) set-aside, and (6) general crop richness. All mitigation measures had significant effects on hare population development. Compared to the base scenario, the relative change in hare abundance ranged from a factor of 0.56 in the grass-clover ley scenario to-0.16 in the miscanthus scenario. The mitigation measures of mixed silphie, grass-clover ley and increased crop richness led to distinct increases in hare abundance in both landscapes ( > 0.3). The results show that both landscape configuration and composition have a significant effect on hare population development, which responds particularly strongly to compositional changes. The increase in crop diversity, e.g., through the cultivation of alternative energy crops such as mixed silphie and grass-clover ley, proves to be beneficial for the brown hare.}, language = {en} } @article{SchaelickeHeimMartinCreuzburgetal.2020, author = {Sch{\"a}licke, Svenja and Heim, Silvia and Martin-Creuzburg, Dominik and Wacker, Alexander}, title = {Inter- and intraspecific differences in rotifer fatty acid composition during acclimation to low-quality food}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {375}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1804}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2019.0644}, pages = {8}, year = {2020}, abstract = {Biochemical food quality constraints affect the performance of consumers and mediate trait variation among and within consumer species. To assess inter- and intraspecific differences in fatty acid retention and conversion in freshwater rotifers, we provided four strains of two closely related rotifer species,Brachionus calyciflorussensustricto andBrachionus fernandoi, with food algae differing in their fatty acid composition. The rotifers grazed for 5 days on eitherNannochloropsis limneticaorMonoraphidium minutum, two food algae with distinct polyunsaturated fatty acid (PUFA) profiles, before the diets were switched to PUFA-freeSynechococcus elongatus, which was provided for three more days. We found between- and within-species differences in rotifer fatty acid compositions on the respective food sources and, in particular, highly specific acclimation reactions to the PUFA-free diet. The different reactions indicate inter- but also intraspecific differences in physiological traits, such as PUFA retention, allocation and bioconversion capacities, within the genusBrachionusthat are most likely accompanied by differences in their nutritional demands. Our data suggest that biochemical food quality constraints act differently on traits of closely related species and of strains of a particular species and thus might be involved in shaping ecological interactions and evolutionary processes. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.}, language = {en} } @article{SchneebergerRoederTaborsky2020, author = {Schneeberger, Karin and R{\"o}der, Gregory and Taborsky, Michael}, title = {The smell of hunger}, series = {PLoS biology}, volume = {18}, journal = {PLoS biology}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1544-9173}, doi = {10.1371/journal.pbio.3000628}, pages = {13}, year = {2020}, abstract = {When individuals exchange helpful acts reciprocally, increasing the benefit of the receiver can enhance its propensity to return a favour, as pay-offs are typically correlated in iterated interactions. Therefore, reciprocally cooperating animals should consider the relative benefit for the receiver when deciding to help a conspecific. Norway rats (Rattus norvegicus) exchange food reciprocally and thereby take into account both the cost of helping and the potential benefit to the receiver. By using a variant of the sequential iterated prisoner's dilemma paradigm, we show that rats may determine the need of another individual by olfactory cues alone. In an experimental food-exchange task, test subjects were provided with odour cues from hungry or satiated conspecifics located in a different room. Our results show that wild-type Norway rats provide help to a stooge quicker when they receive odour cues from a hungry rather than from a satiated conspecific. Using chemical analysis by gas chromatography-mass spectrometry (GC-MS), we identify seven volatile organic compounds that differ in their abundance between hungry and satiated rats. Combined, this "smell of hunger" can apparently serve as a reliable cue of need in reciprocal cooperation, which supports the hypothesis of honest signalling.}, language = {en} } @article{MunjonjiAyisiMudongoetal.2020, author = {Munjonji, Lawrence and Ayisi, Kingsley Kwabena and Mudongo, Edwin I. and Mafeo, Tieho Paulus and Behn, Kai and Mokoka, Malesela Vincent and Linst{\"a}dter, Anja}, title = {Disentangling drought and grazing effects on soil carbon stocks and CO2 fluxes in a semi-arid African Savanna}, series = {Frontiers in Environmental Science}, volume = {8}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2020.590665}, pages = {14}, year = {2020}, abstract = {Grasslands cover ca. 30\% of the global land surface and provide critical ecosystem services. Among them, carbon storage is one of the most important. However, grasslands are increasingly threatened by drought and overgrazing which might negatively affect soil carbon stocks. Despite this threat, there is a dearth of information on how drought and grazing jointly impact soil carbon stocks and CO2 fluxes in dryland grasslands. With the aid of a large field experiment, we studied the combined effects of a 5-year extreme drought and moderate grazing on soil carbon stocks, CO2 fluxes and soil chemical properties. Extreme drought was induced by reducing ambient rainfall by 66\% using large rainout shelters. We found CO2 fluxes to strongly respond to the 5-year experimental drought. Extreme drought reduced CO2 emission rates by 32\% compared to ambient conditions. CO2 fluxes averaged 5.7 mg m(-2)min(-1) under drought compared to 8.3 mg m(-2) min(-1) under ambient conditions. CO2 fluxes were, however, not influenced by grazing. At the end of the growth period, grazed plots under ambient rainfall had released 16.3 tons of CO2 ha(-1) which was 58\% higher than observed on grazed plots subjected to severe drought. Soil carbon stocks were higher under drought conditions due to slower decomposition rates. Drought resulted in increased concentrations of primary macronutrients (N, P, and K), micronutrients (Zn and Mn) and pH in the top 30 cm of the soil relative to ambient conditions. The results also showed that grazing reduced the concentration of N and P in the topsoil compared to the ungrazed plots. This study provided insights on the soil carbon storage, CO2 emission rates and nutrient dynamics in a semi-arid dryland grassland as influenced by both drought and grazing. Our study also revealed that long-term extreme drought may be favorable in terms of preserving the existing soil carbon stocks through reduced CO2 release. This finding is critical for understanding future soil carbon dynamics in dryland grasslands in the face of climate change.}, language = {en} } @article{HuangHerzschuhPestryakovaetal.2020, author = {Huang, Sichao and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Zimmermann, Heike Hildegard and Davydova, Paraskovya and Biskaborn, Boris and Shevtsova, Iuliia and Stoof-Leichsenring, Kathleen Rosemarie}, title = {Genetic and morphologic determination of diatom community composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic}, series = {Journal of paleolimnolog}, volume = {64}, journal = {Journal of paleolimnolog}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-020-00133-1}, pages = {225 -- 242}, year = {2020}, abstract = {Lakes cover large parts of the climatically sensitive Arctic landscape and respond rapidly to environmental change. Arctic lakes have different origins and include the predominant thermokarst lakes, which are small, young and highly dynamic, as well as large, old and stable glacial lakes. Freshwater diatoms dominate the primary producer community in these lakes and can be used to detect biotic responses to climate and environmental change. We used specific diatom metabarcoding on sedimentary DNA, combined with next-generation sequencing and diatom morphology, to assess diatom diversity in five glacial and 15 thermokarst lakes within the easternmost expanse of the Siberian treeline ecotone in Chukotka, Russia. We obtained 163 verified diatom sequence types and identified 176 diatom species morphologically. Although there were large differences in taxonomic assignment using the two approaches, they showed similar high abundances and diversity of Fragilariceae and Aulacoseiraceae. In particular, the genetic approach detected hidden within-lake variations of fragilarioids in glacial lakes and dominance of centric Aulacoseira species, whereas Lindavia ocellata was predominant using morphology. In thermokarst lakes, sequence types and valve counts also detected high diversity of Fragilariaceae, which followed the vegetation gradient along the treeline. Ordination analyses of the genetic data from glacial and thermokarst lakes suggest that concentrations of sulfate (SO42-), an indicator of the activity of sulfate-reducing microbes under anoxic conditions, and bicarbonate (HCO3-), which relates to surrounding vegetation, have a significant influence on diatom community composition. For thermokarst lakes, we also identified lake depth as an important variable, but SO42- best explains diatom diversity derived from genetic data, whereas HCO3- best explains the data from valve counts. Higher diatom diversity was detected in glacial lakes, most likely related to greater lake age and different edaphic settings, which gave rise to diversification and endemism. In contrast, small, dynamic thermokarst lakes are inhabited by stress-tolerant fragilarioids and are related to different vegetation types along the treeline ecotone. Our study demonstrated that genetic investigations of lake sediments can be used to interpret climate and environmental responses of diatoms. It also showed how lake type affects diatom diversity, and that such genetic analyses can be used to track diatom community changes under ongoing warming in the Arctic.}, language = {en} } @article{LyallNikoloskiGechev2020, author = {Lyall, Rafe and Nikoloski, Zoran and Gechev, Tsanko}, title = {Comparative analysis of ROS network genes in extremophile Eukaryotes}, series = {International journal of molecular sciences}, volume = {21}, journal = {International journal of molecular sciences}, number = {23}, publisher = {Molecular Diversity Preservation International (MDPI)}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21239131}, pages = {27}, year = {2020}, abstract = {The reactive oxygen species (ROS) gene network, consisting of both ROS-generating and detoxifying enzymes, adjusts ROS levels in response to various stimuli. We performed a cross-kingdom comparison of ROS gene networks to investigate how they have evolved across all Eukaryotes, including protists, fungi, plants and animals. We included the genomes of 16 extremotolerant Eukaryotes to gain insight into ROS gene evolution in organisms that experience extreme stress conditions. Our analysis focused on ROS genes found in all Eukaryotes (such as catalases, superoxide dismutases, glutathione reductases, peroxidases and glutathione peroxidase/peroxiredoxins) as well as those specific to certain groups, such as ascorbate peroxidases, dehydroascorbate/monodehydroascorbate reductases in plants and other photosynthetic organisms. ROS-producing NADPH oxidases (NOX) were found in most multicellular organisms, although several NOX-like genes were identified in unicellular or filamentous species. However, despite the extreme conditions experienced by extremophile species, we found no evidence for expansion of ROS-related gene families in these species compared to other Eukaryotes. Tardigrades and rotifers do show ROS gene expansions that could be related to their extreme lifestyles, although a high rate of lineage-specific horizontal gene transfer events, coupled with recent tetraploidy in rotifers, could explain this observation. This suggests that the basal Eukaryotic ROS scavenging systems are sufficient to maintain ROS homeostasis even under the most extreme conditions.}, language = {en} } @article{SteppertSteppertBollingeretal.2020, author = {Steppert, Claus and Steppert, Isabel and Bollinger, Thomas and Sterlacci, William}, title = {Rapid non-invasive detection of Influenza-A-infection by multicapillary column coupled ion mobility spectrometry}, series = {Journal of breath research : volatiles for medical diagnosis ; official journal of the International Association for Breath Research (IABR) and the International Society for Breath Odor Research (ISBOR)}, volume = {15}, journal = {Journal of breath research : volatiles for medical diagnosis ; official journal of the International Association for Breath Research (IABR) and the International Society for Breath Odor Research (ISBOR)}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1752-7163}, doi = {10.1088/1752-7163/abb762}, pages = {5}, year = {2020}, abstract = {Infectious pathogens are a global issue. Global air travel offers an easy and fast opportunity not only for people but also for infectious diseases to spread around the world within a few days. Also, large public events facilitate increasing infection numbers. Therefore, rapid on-site screening for infected people is urgently needed. Due to the small size and easy handling, ion mobility spectrometry coupled with a multicapillary column (MCC-IMS) is a very promising, sensitive method for the on-site identification of infectious pathogens based on scents, representing volatile organic compounds (VOCs). The purpose of this study was to prospectively assess whether identification of Influenza-A-infection based on VOCs by MCC-IMS is possible in breath. Nasal breath was investigated in 24 consecutive persons with and without Influenza-A-infection by MCC-IMS. In 14 Influenza-A-infected patients, infection was proven by PCR of nasopharyngeal swabs. Four healthy staff members and six patients with negative PCR result served as controls. For picking up relevant VOCs in MCC-IMS spectra, software based on cluster analysis followed by multivariate statistical analysis was applied. With only four VOCs canonical discriminant analysis was able to distinguish Influenza-A-infected patients from those not infected with 100\% sensitivity and 100\% specificity. This present proof-of-concept-study yields encouraging results showing a rapid diagnosis of viral infections in nasal breath within 5 min by MCC-IMS. The next step is to validate the results with a greater number of patients with Influenza-A-infection as well as other viral diseases, especially COVID-19. Registration number at ClinicalTrials.gov NCT04282135.}, language = {en} } @article{NguyenMamonekeneVateretal.2020, author = {Nguyen, Manh Duy Linh and Mamonekene, Victor and Vater, Marianne and Bartsch, Peter and Tiedemann, Ralph and Kirschbaum, Frank}, title = {Ontogeny of electric organ and electric organ discharge in Campylomormyrus rhynchophorus (Teleostei: Mormyridae)}, series = {Journal of comparative physiology; A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {206}, journal = {Journal of comparative physiology; A, Neuroethology, sensory, neural, and behavioral physiology}, number = {3}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0340-7594}, doi = {10.1007/s00359-020-01411-z}, pages = {453 -- 466}, year = {2020}, abstract = {The aim of this study was a longitudinal description of the ontogeny of the adult electric organ of Campylomormyrus rhynchophorus which produces as adult an electric organ discharge of very long duration (ca. 25 ms). We could indeed show (for the first time in a mormyrid fish) that the electric organ discharge which is first produced early during ontogeny in 33-mm-long juveniles is much shorter in duration and has a different shape than the electric organ discharge in 15-cm-long adults. The change from this juvenile electric organ discharges into the adult electric organ discharge takes at least a year. The increase in electric organ discharge duration could be causally linked to the development of surface evaginations, papillae, at the rostral face of the electrocyte which are recognizable for the first time in 65-mm-long juveniles and are most prominent at the periphery of the electrocyte.}, language = {en} } @article{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Ocean science}, volume = {16}, journal = {Ocean science}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1812-0784}, doi = {10.5194/os-16-1017-2020}, pages = {1017 -- 1032}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7\% of our sequences being assigned to diatoms across 18 different families, with 38.6\% of them being resolved to species and 25.8\% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2\% of the assemblage point towards past sea-ice presence.}, language = {en} } @article{WuestenhagenLukasMuelleretal.2020, author = {W{\"u}stenhagen, Doreen Anja and Lukas, Phil and M{\"u}ller, Christian and Aubele, Simone A. and Hildebrandt, Jan-Peter and Kubick, Stefan}, title = {Cell-free synthesis of the hirudin variant 1 of the blood-sucking leech Hirudo medicinalis}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-76715-w}, pages = {13}, year = {2020}, abstract = {Synthesis and purification of peptide drugs for medical applications is a challenging task. The leech-derived factor hirudin is in clinical use as an alternative to heparin in anticoagulatory therapies. So far, recombinant hirudin is mainly produced in bacterial or yeast expression systems. We describe the successful development and application of an alternative protocol for the synthesis of active hirudin based on a cell-free protein synthesis approach. Three different cell lysates were compared, and the effects of two different signal peptide sequences on the synthesis of mature hirudin were determined. The combination of K562 cell lysates and the endogenous wild-type signal peptide sequence was most effective. Cell-free synthesized hirudin showed a considerably higher anti-thrombin activity compared to recombinant hirudin produced in bacterial cells.}, language = {en} } @article{MarquartEldridgeGeissleretal.2020, author = {Marquart, Arnim and Eldridge, David J. and Geissler, Katja and Lobas, Christoph and Blaum, Niels}, title = {Interconnected effects of shrubs, invertebrate-derived macropores and soil texture on water infiltration in a semi-arid savanna rangeland}, series = {Land degradation \& development}, volume = {31}, journal = {Land degradation \& development}, number = {16}, publisher = {Wiley}, address = {Chichester, Sussex}, issn = {1085-3278}, doi = {10.1002/ldr.3598}, pages = {2307 -- 2318}, year = {2020}, abstract = {Many semi arid savannas are prone to degradation, caused for example, by overgrazing or extreme climatic events, which often lead to shrub encroachment. Overgrazing by livestock affects vegetation and infiltration processes by directly altering plant composition (selective grazing) or by impacting soil physical properties (trampling). Water infiltration is controlled by several parameters, such as macropores (created by soil-burrowing animals or plant roots) and soil texture, but their effects have mostly been studied in isolation. Here we report on a study, in which we conducted infiltration experiments to analyze the interconnected effects of invertebrate-created macropores, shrubs and soil texture (sandy soil and loamy sand) on infiltration in two Namibian rangelands. Using structural equation modeling, we found a direct positive effect of shrub size on infiltration and indirectly via invertebrate macropores on both soil types. On loamy sands this effect was even stronger, but additionally, invertebrate-created macropores became relevant as a direct driver of infiltration. Our results provide new insights into the effects of vegetation and invertebrates on infiltration under different soil textures. Pastoralists should use management strategies that maintain a heterogeneous plant community that supports soil fauna to sustain healthy soil water dynamics, particularly on soils with higher loam content. Understanding the fundamental functioning of soil water dynamics in drylands is critical because these ecosystems are water-limited and support the livelihoods of many cultures worldwide.}, language = {en} } @article{NowakGennermannPerssonetal.2020, author = {Nowak, Jacqueline and Gennermann, Kristin and Persson, Staffan and Nikoloski, Zoran}, title = {CytoSeg 2.0}, series = {Bioinformatics}, volume = {36}, journal = {Bioinformatics}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btaa035}, pages = {2950 -- 2951}, year = {2020}, abstract = {Motivation: Actin filaments (AFs) are dynamic structures that substantially change their organization over time. The dynamic behavior and the relatively low signal-to-noise ratio during live-cell imaging have rendered the quantification of the actin organization a difficult task. Results: We developed an automated image-based framework that extracts AFs from fluorescence microscopy images and represents them as networks, which are automatically analyzed to identify and compare biologically relevant features. Although the source code is freely available, we have now implemented the framework into a graphical user interface that can be installed as a Fiji plugin, thus enabling easy access by the research community.}, language = {en} }