@article{DietzeKrautblatterIllienetal.2021, author = {Dietze, Michael and Krautblatter, Michael and Illien, Luc and Hovius, Niels}, title = {Seismic constraints on rock damaging related to a failing mountain peak}, series = {Earth surface processes and landforms}, volume = {46}, journal = {Earth surface processes and landforms}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.5034}, pages = {417 -- 429}, year = {2021}, abstract = {Large rock slope failures play a pivotal role in long-term landscape evolution and are a major concern in land use planning and hazard aspects. While the failure phase and the time immediately prior to failure are increasingly well studied, the nature of the preparation phase remains enigmatic. This knowledge gap is due, to a large degree, to difficulties associated with instrumenting high mountain terrain and the local nature of classic monitoring methods, which does not allow integral observation of large rock volumes. Here, we analyse data from a small network of up to seven seismic sensors installed during July-October 2018 (with 43 days of data loss) at the summit of the Hochvogel, a 2592 m high Alpine peak. We develop proxy time series indicative of cyclic and progressive changes of the summit. Modal analysis, horizontal-to-vertical spectral ratio data and end-member modelling analysis reveal diurnal cycles of increasing and decreasing coupling stiffness of a 260,000 m(3) large, instable rock volume, due to thermal forcing. Relative seismic wave velocity changes also indicate diurnal accumulation and release of stress within the rock mass. At longer time scales, there is a systematic superimposed pattern of stress increased over multiple days and episodic stress release within a few days, expressed in an increased emission of short seismic pulses indicative of rock cracking. Our data provide essential first order information on the development of large-scale slope instabilities towards catastrophic failure. (c) 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley \& Sons Ltd}, language = {en} } @article{HeidenreichMassonBamberg2020, author = {Heidenreich, Anna and Masson, Torsten and Bamberg, Sebastian}, title = {Let's talk about flood risk}, series = {International journal of disaster risk reduction : IJDRR}, volume = {50}, journal = {International journal of disaster risk reduction : IJDRR}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {2212-4209}, doi = {10.1016/j.ijdrr.2020.101880}, pages = {10}, year = {2020}, abstract = {Private flood protection measures can help reduce potential damage from flooding. Few intervention studies currently exist that systematically evaluate the effectiveness of risk communication methods. To address this gap, we evaluated a series of six workshops (N = 115) on private flood protection in flood-prone areas in Germany that covers different aspects of flood protection for individual households. Applying mixed-model analysis, significant increases in self-efficacy, subjective knowledge, and protection motivation were observed. Younger participants, as well as participants who reported lower levels of previous knowledge or no flood experience, showed a higher increase in self-efficacy and knowledge. Results suggest that a workshop can be an effective risk communication tool, raising awareness and motivating behaviour among residents of flood-prone areas.}, language = {en} }