@article{VehLuetzowKharlamovaetal.2022, author = {Veh, Georg and L{\"u}tzow, Natalie and Kharlamova, Varvara and Petrakov, Dmitry and Hugonnet, Romain and Korup, Oliver}, title = {Trends, breaks, and biases in the frequency of reported glacier lake outburst floods}, series = {Earth's future}, volume = {10}, journal = {Earth's future}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2328-4277}, doi = {10.1029/2021EF002426}, pages = {14}, year = {2022}, abstract = {Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.}, language = {en} } @article{SpallanzaniKogaCichyetal.2022, author = {Spallanzani, Roberta and Koga, Kenneth T. and Cichy, Sarah B. and Wiedenbeck, Michael and Schmidt, Burkhard C. and Oelze, Marcus and Wilke, Max}, title = {Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts}, series = {Contributions to mineralogy and petrology}, volume = {177}, journal = {Contributions to mineralogy and petrology}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-022-01937-2}, pages = {17}, year = {2022}, abstract = {Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt\% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700-1250 degrees C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 +/- 4 kJ/mol and 152 +/- 15 kJ/mol with pre-exponential factors of 1.53 x 10(-7) m(2)/s and 3.80 x 10(-8) m(2)/s, respectively. Lithium isotopic fractionation during diffusion gave beta values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates.}, language = {en} } @article{KothaWeatherillBindietal.2022, author = {Kotha, Sreeram Reddy and Weatherill, Graeme and Bindi, Dino and Cotton, Fabrice}, title = {Near-source magnitude scaling of spectral accelerations}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {20}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-021-01308-5}, pages = {1343 -- 1370}, year = {2022}, abstract = {Ground-motion models (GMMs) are often used to predict the random distribution of Spectral accelerations (SAs) at a site due to a nearby earthquake. In probabilistic seismic hazard and risk assessment, large earthquakes occurring close to a site are considered as critical scenarios. GMMs are expected to predict realistic SAs with low within-model uncertainty (sigma(mu)) for such rare scenarios. However, the datasets used to regress GMMs are usually deficient of data from critical scenarios. The (Kotha et al., A Regionally Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe Bulletin of Earthquake Engineering 18:4091-4125, 2020) GMM developed from the Engineering strong motion (ESM) dataset was found to predict decreasing short-period SAs with increasing M-W >= M-h = 6.2, and with large sigma(mu) at near-source distances <= 30km. In this study, we updated the parametrisation of the GMM based on analyses of ESM and the Near source strong motion (NESS) datasets. With M-h = 5.7, we could rectify the M-W scaling issue, while also reducing sigma(mu). at M-W >= M-h. We then evaluated the GMM against NESS data, and found that the SAs from a few large, thrust-faulting events in California, New Zealand, Japan, and Mexico are significantly higher than GMM median predictions. However, recordings from these events were mostly made on soft-soil geology, and contain anisotropic pulse-like effects. A more thorough non-ergodic treatment of NESS was not possible because most sites sampled unique events in very diverse tectonic environments. We provide an updated set of GMM coefficients,sigma(mu), and heteroscedastic variance models; while also cautioning against its application for M-W <= 4 in low-moderate seismicity regions without evaluating the homogeneity of M-W estimates between pan-European ESM and regional datasets.}, language = {en} } @article{MerzBassoFischeretal.2022, author = {Merz, Bruno and Basso, Stefano and Fischer, Svenja and Lun, David and Bloeschl, Guenter and Merz, Ralf and Guse, Bjorn and Viglione, Alberto and Vorogushyn, Sergiy and Macdonald, Elena and Wietzke, Luzie and Schumann, Andreas}, title = {Understanding heavy tails of flood peak distributions}, series = {Water resources research}, volume = {58}, journal = {Water resources research}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2021WR030506}, pages = {37}, year = {2022}, abstract = {Statistical distributions of flood peak discharge often show heavy tail behavior, that is, extreme floods are more likely to occur than would be predicted by commonly used distributions that have exponential asymptotic behavior. This heavy tail behavior may surprise flood managers and citizens, as human intuition tends to expect light tail behavior, and the heaviness of the tails is very difficult to predict, which may lead to unnecessarily high flood damage. Despite its high importance, the literature on the heavy tail behavior of flood distributions is rather fragmented. In this review, we provide a coherent overview of the processes causing heavy flood tails and the implications for science and practice. Specifically, we propose nine hypotheses on the mechanisms causing heavy tails in flood peak distributions related to processes in the atmosphere, the catchment, and the river system. We then discuss to which extent the current knowledge supports or contradicts these hypotheses. We also discuss the statistical conditions for the emergence of heavy tail behavior based on derived distribution theory and relate them to the hypotheses and flood generation mechanisms. We review the degree to which the heaviness of the tails can be predicted from process knowledge and data. Finally, we recommend further research toward testing the hypotheses and improving the prediction of heavy tails.}, language = {en} } @article{KrstulovićRosaFerreiraSanchezetal.2022, author = {Krstulović, Marija and Rosa, Angelika D. and Ferreira Sanchez, Dario and Libon, L{\´e}lia and Albers, Christian and Merkulova, Margarita and Grolimund, Daniel and Irifune, Tetsuo and Wilke, Max}, title = {Effect of temperature on the densification of silicate melts to lower earth's mantle conditions}, series = {Physics of the earth and planetary interiors}, volume = {323}, journal = {Physics of the earth and planetary interiors}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-9201}, doi = {10.1016/j.pepi.2021.106823}, pages = {13}, year = {2022}, abstract = {Physical properties of silicate melts play a key role for global planetary dynamics, controlling for example volcanic eruption styles, mantle convection and elemental cycling in the deep Earth. They are significantly modified by structural changes at the atomic scale due to external parameters such as pressure and temperature or due to chemistry. Structural rearrangements such as 4- to 6-fold coordination change of Si with increasing depth may profoundly influence melt properties, but have so far mostly been studied at ambient temperature due to experimental difficulties. In order to investigate the structural properties of silicate melts and their densification mechanisms at conditions relevant to the deep Earth's interior, we studied haplo basaltic glasses and melts (albite-diopside composition) at high pressure and temperature conditions in resistively and laser-heated diamond anvil cells using X-ray absorption near edge structure spectroscopy. Samples were doped with 10 wt\% of Ge, which is accessible with this experimental technique and which commonly serves as a structural analogue for the network forming cation Si. We acquired spectra on the Ge K edge up to 48 GPa and 5000 K and derived the average Ge-O coordination number NGe-O, and bond distance RGe-O as functions of pressure. Our results demonstrate a continuous transformation from tetrahedral to octahedral coordination between ca. 5 and 30 GPa at ambient temperature. Above 1600 K the data reveal a reduction of the pressure needed to complete conversion to octahedral coordination by ca. 30 \%. The results allow us to determine the influence of temperature on the Si coordination number changes in natural melts in the Earth's interior. We propose that the complete transition to octahedral coordination in basaltic melts is reached at about 40 GPa, corresponding to a depth of ca. 1200 km in the uppermost lower mantle. At the core-mantle boundary (2900 km, 130 GPa, 3000 K) the existence of non-buoyant melts has been proposed to explain observed low seismic wave velocity features. Our results highlight that the melt composition can affect the melt density at such extreme conditions and may strongly influence the structural response.}, language = {en} } @article{EzpeletaParraColloetal.2022, author = {Ezpeleta, Miguel and Parra, Mauricio and Collo, Gilda and Wunderlin, Cecilia and Borrego, Angeles G. and Sobel, Edward R. and Glodny, Johannes}, title = {Thermochronometry unveils ancient thermal regimes in the NW Pampean Ranges, Argentina}, series = {Basin research}, volume = {34}, journal = {Basin research}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12693}, pages = {1983 -- 2012}, year = {2022}, abstract = {Reconstructing thermal histories in thrust belts is commonly used to infer the age and rates of thrusting and hence the driving mechanisms of orogenesis. In areas where ancient basins have been incorporated into the orogenic wedge, a quantitative reconstruction of the thermal history helps distinguish among potential mechanisms responsible for heating events. We present such a reconstruction for the Ischigualasto-Villa Union basin in the western Pampean Ranges of Argentina, where Triassic rifting and late Cretaceous-Cenozoic retroarc foreland basin development has been widely documented, including Miocene flat-slab subduction. We report results of organic and inorganic thermal indicators acquired along three stratigraphic sections, including vitrinite reflectance and X-ray diffractometry in claystones and new thermochronological [(apatite fission-track and apatite and zircon [U-Th]/He)] analyses. Despite up to 5 km-thick Cenozoic overburden and unlike previously thought, the thermal peak in the basin is not due to Cenozoic burial but occurred in the Triassic, associated with a high heat flow of up to 90 mWm(-2) and <2 km of burial, which heated the base of the Triassic strata to similar to 160 degrees C. Following exhumation, attested by the development of an unconformity between the Triassic and Late-Cretaceous-Cenozoic sequences, Cenozoic re-burial increased the temperature to similar to 110 degrees C at the base of the Triassic section and only similar to 50 degrees C 7 km upsection, suggesting a dramatic decrease in the thermal gradient. The onset of Cenozoic cooling occurred at similar to 10(-8) Ma, concomitant with sediment accumulation and thus preceding the latest Miocene onset of thrusting that has been independently documented by stratigraphic-cross-cutting relationships. We argue that the onset of cooling is associated with lithospheric refrigeration following establishment of flat-slab subduction, leading to the eastward displacement of the asthenospheric wedge beneath the South American plate. Our study places time and temperature constraints on flat-slab cooling that calls for a careful interpretation of exhumation signals in thrustbelts inferred from thermochronology only.}, language = {en} } @article{FernandezPalominoHattermannKrysanovaetal.2022, author = {Fernandez-Palomino, Carlos Antonio and Hattermann, Fred and Krysanova, Valentina and Lobanova, Anastasia and Vega-Jacome, Fiorella and Lavado, Waldo and Santini, William and Aybar, Cesar and Bronstert, Axel}, title = {A novel high-resolution gridded precipitation dataset for peruvian and ecuadorian watersheds}, series = {Journal of hydrometeorology}, volume = {23}, journal = {Journal of hydrometeorology}, number = {3}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {1525-755X}, doi = {10.1175/JHM-D-20-0285.1}, pages = {309 -- 336}, year = {2022}, abstract = {A novel approach for estimating precipitation patterns is developed here and applied to generate a new hydrologically corrected daily precipitation dataset, called RAIN4PE (Rain for Peru and Ecuador), at 0.1 degrees spatial resolution for the period 1981-2015 covering Peru and Ecuador. It is based on the application of 1) the random forest method to merge multisource precipitation estimates (gauge, satellite, and reanalysis) with terrain elevation, and 2) observed and modeled streamflow data to first detect biases and second further adjust gridded precipitation by inversely applying the simulated results of the ecohydrological model SWAT (Soil and Water Assessment Tool). Hydrological results using RAIN4PE as input for the Peruvian and Ecuadorian catchments were compared against the ones when feeding other uncorrected (CHIRP and ERA5) and gauge-corrected (CHIRPS, MSWEP, and PISCO) precipitation datasets into the model. For that, SWAT was calibrated and validated at 72 river sections for each dataset using a range of performance metrics, including hydrograph goodness of fit and flow duration curve signatures. Results showed that gauge-corrected precipitation datasets outperformed uncorrected ones for streamflow simulation. However, CHIRPS, MSWEP, and PISCO showed limitations for streamflow simulation in several catchments draining into the Pacific Ocean and the Amazon River. RAIN4PE provided the best overall performance for streamflow simulation, including flow variability (low, high, and peak flows) and water budget closure. The overall good performance of RAIN4PE as input for hydrological modeling provides a valuable criterion of its applicability for robust countrywide hydrometeorological applications, including hydroclimatic extremes such as droughts and floods. Significance StatementWe developed a novel precipitation dataset RAIN4PE for Peru and Ecuador by merging multisource precipitation data (satellite, reanalysis, and ground-based precipitation) with terrain elevation using the random forest method. Furthermore, RAIN4PE was hydrologically corrected using streamflow data in watersheds with precipitation underestimation through reverse hydrology. The results of a comprehensive hydrological evaluation showed that RAIN4PE outperformed state-of-the-art precipitation datasets such as CHIRP, ERA5, CHIRPS, MSWEP, and PISCO in terms of daily and monthly streamflow simulations, including extremely low and high flows in almost all Peruvian and Ecuadorian catchments. This underlines the suitability of RAIN4PE for hydrometeorological applications in this region. Furthermore, our approach for the generation of RAIN4PE can be used in other data-scarce regions.}, language = {en} } @article{WestRosolemMacDonaldetal.2022, author = {West, Charles and Rosolem, Rafael and MacDonald, Alan M. and Cuthbert, Mark O. and Wagener, Thorsten}, title = {Understanding process controls on groundwater recharge variability across Africa through recharge landscapes}, series = {Journal of hydrology}, volume = {612}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2022.127967}, pages = {19}, year = {2022}, abstract = {Groundwater is critical in supporting current and future reliable water supply throughout Africa. Although continental maps of groundwater storage and recharge have been developed, we currently lack a clear understanding on how the controls on groundwater recharge vary across the entire continent. Reviewing the existing literature, we synthesize information on reported groundwater recharge controls in Africa. We find that 15 out of 22 of these controls can be characterised using global datasets. We develop 11 descriptors of climatic, topographic, vegetation, soil and geologic properties using global datasets, to characterise groundwater recharge controls in Africa. These descriptors cluster Africa into 15 Recharge Landscape Units for which we expect recharge controls to be similar. Over 80\% of the continents land area is organized by just nine of these units. We also find that aggregating the Units by similarity into four broader Recharge Landscapes (Desert, Dryland, Wet tropical and Wet tropical forest) provides a suitable level of landscape organisation to explain differences in ground-based long-term mean annual recharge and recharge ratio (annual recharge / annual precipitation) estimates. Furthermore, wetter Recharge Landscapes are more efficient in converting rainfall to recharge than drier Recharge Landscapes as well as having higher annual recharge rates. In Dryland Recharge Landscapes, we found that annual recharge rates largely varied according to mean annual precipitation, whereas recharge ratio estimates increase with increasing monthly variability in P-PET. However, we were unable to explain why ground based estimates of recharge signatures vary across other Recharge Landscapes, in which there are fewer ground based recharge estimates, using global datasets alone. Even in dryland regions, there is still considerable unexplained variability in the estimates of annual recharge and recharge ratio, stressing the limitations of global datasets for investigating ground-based information.}, language = {en} } @article{GomezZapataZafrirPittoreetal.2022, author = {Gomez Zapata, Juan Camilo and Zafrir, Raquel and Pittore, Massimiliano and Merino, Yvonne}, title = {Towards a sensitivity analysis in seismic risk with probabilistic building exposure models}, series = {ISPRS International Journal of Geo-Information}, volume = {11}, journal = {ISPRS International Journal of Geo-Information}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2220-9964}, doi = {10.3390/ijgi11020113}, pages = {38}, year = {2022}, abstract = {Efforts have been made in the past to enhance building exposure models on a regional scale with increasing spatial resolutions by integrating different data sources. This work follows a similar path and focuses on the downscaling of the existing SARA exposure model that was proposed for the residential building stock of the communes of Valparaiso and Vina del Mar (Chile). Although this model allowed great progress in harmonising building classes and characterising their differential physical vulnerabilities, it is now outdated, and in any case, it is spatially aggregated over large administrative units. Hence, to more accurately consider the impact of future earthquakes on these cities, it is necessary to employ more reliable exposure models. For such a purpose, we propose updating this existing model through a Bayesian approach by integrating ancillary data that has been made increasingly available from Volunteering Geo-Information (VGI) activities. Its spatial representation is also optimised in higher resolution aggregation units that avoid the inconvenience of having incomplete building-by-building footprints. A worst-case earthquake scenario is presented to calculate direct economic losses and highlight the degree of uncertainty imposed by exposure models in comparison with other parameters used to generate the seismic ground motions within a sensitivity analysis. This example study shows the great potential of using increasingly available VGI to update worldwide building exposure models as well as its importance in scenario-based seismic risk assessment.}, language = {en} } @article{BenNsirJomaaYildirimetal.2022, author = {Ben Nsir, Siwar and Jomaa, Seifeddine and Yildirim, Umit and Zhou, Xiangqian and D'Oria, Marco and Rode, Michael and Khlifi, Slaheddine}, title = {Assessment of climate change impact on discharge of the lakhmass catchment (Northwest Tunisia)}, series = {Water}, volume = {14}, journal = {Water}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14142242}, pages = {17}, year = {2022}, abstract = {The Mediterranean region is increasingly recognized as a climate change hotspot but is highly underrepresented in hydrological climate change studies. This study aims to investigate the climate change effects on the hydrology of Lakhmass catchment in Tunisia. Lakhmass catchment is a part of the Medium Valley of Medjerda in northwestern Tunisia that drains an area of 126 km(2). First, the Hydrologiska Byrans Vattenbalansavdelning light (HBV-light) model was calibrated and validated successfully at a daily time step to simulate discharge during the 1981-1986 period. The Nash Sutcliffe Efficiency and Percent bias (NSE, PBIAS) were (0.80, +2.0\%) and (0.53, -9.5\%) for calibration (September 1982-August 1984) and validation (September 1984-August 1986) periods, respectively. Second, HBV-light model was considered as a predictive tool to simulate discharge in a baseline period (1981-2009) and future projections using data (precipitation and temperature) from thirteen combinations of General Circulation Models (GCMs) and Regional Climatic Models (RCMs). We used two trajectories of Representative Concentration Pathways, RCP4.5 and RCP8.5, suggested by the Intergovernmental Panel on Climate Change (IPCC). Each RCP is divided into three projection periods: near-term (2010-2039), mid-term (2040-2069) and long-term (2070-2099). For both scenarios, a decrease in precipitation and discharge will be expected with an increase in air temperature and a reduction in precipitation with almost 5\% for every +1 degrees C of global warming. By long-term (2070-2099) projection period, results suggested an increase in temperature with about 2.7 degrees C and 4 degrees C, and a decrease in precipitation of approximately 7.5\% and 15\% under RCP4.5 and RCP8.5, respectively. This will likely result in a reduction of discharge of 12.5\% and 36.6\% under RCP4.5 and RCP8.5, respectively. This situation calls for early climate change adaptation measures under a participatory approach, including multiple stakeholders and water users.}, language = {en} } @article{McCoolCoddingVernonetal.2022, author = {McCool, Weston C. and Codding, Brian F. and Vernon, Kenneth B. and Wilson, Kurt M. and Yaworsky, Peter M. and Marwan, Norbert and Kennett, Douglas J.}, title = {Climate change-induced population pressure drives high rates of lethal violence in the Prehispanic central Andes}, series = {Proceedings of the National Academy of Sciences of the United States of America : PNAS}, volume = {119}, journal = {Proceedings of the National Academy of Sciences of the United States of America : PNAS}, number = {17}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.2117556119}, pages = {8}, year = {2022}, abstract = {Understanding the influence of climate change and population pressure on human conflict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect of-and the interaction between-climate and demography. This is crucial given that climate change may structure population growth and carrying capacity, while both climate and population influence per capita resource availability. This study couples paleoclimatic and demographic data with osteological evaluations of lethal trauma from 149 directly accelerator mass spectrometry C-14-dated individuals from the Nasca highland region of Peru. Multiple local and supraregional precipitation proxies are combined with a summed probability distribution of 149 C-14 dates to estimate population dynamics during a 700-y study window. Counter to previous findings, our analysis reveals a precipitous increase in violent deaths associated with a period of productive and stable climate, but volatile population dynamics. We conclude that favorable local climate conditions fostered population growth that put pressure on the marginal and highly circumscribed resource base, resulting in violent resource competition that manifested in over 450 y of internecine warfare. These findings help support a general theory of intergroup violence, indicating that relative resource scarcity-whether driven by reduced resource abundance or increased competition-can lead to violence in subsistence societies when the outcome is lower per capita resource availability.}, language = {en} } @article{YuanJiaoDupontNivetetal.2022, author = {Yuan, Xiaoping P. and Jiao, Ruohong and Dupont-Nivet, Guillaume and Shen, Xiaoming}, title = {Southeastern Tibetan Plateau growth revealed by inverse analysis of landscape evolution model}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL097623}, pages = {10}, year = {2022}, abstract = {The Cenozoic history of the Tibetan Plateau topography is critical for understanding the evolution of the Indian-Eurasian collision, climate, and biodiversity. However, the long-term growth and landscape evolution of the Tibetan Plateau remain ambiguous, it remains unclear if plateau uplift occurred soon after the India-Asia collision in the Paleogene (similar to 50-25 Ma) or later in the Neogene (similar to 20-5 Ma). Here, we reproduce the uplift history of the southeastern Tibetan Plateau using a 2D landscape evolution model, which simultaneously solves fluvial erosion and sediment transport processes in the drainage basins of the Three Rivers region (Yangtze, Mekong, and Salween Rivers). Our model was optimized through a formal inverse analysis with 20,000 forward simulations, which aims to reconcile the transient states of the present-day river profiles. The results, compared to existing paleoelevation and thermochronologic data, suggest initially low elevations (similar to 300-500 m) during the Paleogene, followed by a gradual southeastward propagation of topographic uplift of the plateau margin.}, language = {en} } @article{DrozdovAllisonShpritsetal.2022, author = {Drozdov, Alexander and Allison, Hayley J. and Shprits, Yuri Y. and Usanova, Maria E. and Saikin, Anthony and Wang, Dedong}, title = {Depletions of Multi-MeV Electrons and their association to Minima in Phase Space Density}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL097620}, pages = {11}, year = {2022}, abstract = {Fast-localized electron loss, resulting from interactions with electromagnetic ion cyclotron (EMIC) waves, can produce deepening minima in phase space density (PSD) radial profiles. Here, we perform a statistical analysis of local PSD minima to quantify how readily these are associated with radiation belt depletions. The statistics of PSD minima observed over a year are compared to the Versatile Electron Radiation Belts (VERB) simulations, both including and excluding EMIC waves. The observed minima distribution can only be achieved in the simulation including EMIC waves, indicating their importance in the dynamics of the radiation belts. By analyzing electron flux depletions in conjunction with the observed PSD minima, we show that, in the heart of the outer radiation belt (L* < 5), on average, 53\% of multi-MeV electron depletions are associated with PSD minima, demonstrating that fast localized loss by interactions with EMIC waves are a common and crucial process for ultra-relativistic electron populations.}, language = {en} } @article{ZuhrDolmanHoetal.2022, author = {Zuhr, Alexandra M. and Dolman, Andrew M. and Ho, Sze Ling and Groeneveld, Jeroen and Loewemark, Ludvig and Grotheer, Hendrik and Su, Chih-Chieh and Laepple, Thomas}, title = {Age-heterogeneity in marine sediments revealed by three-dimensional high-resolution radiocarbon measurements}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.871902}, pages = {15}, year = {2022}, abstract = {Marine sedimentary archives are routinely used to reconstruct past environmental changes. In many cases, bioturbation and sedimentary mixing affect the proxy time-series and the age-depth relationship. While idealized models of bioturbation exist, they usually assume homogeneous mixing, thus that a single sample is representative for the sediment layer it is sampled from. However, it is largely unknown to which extent this assumption holds for sediments used for paleoclimate reconstructions. To shed light on 1) the age-depth relationship and its full uncertainty, 2) the magnitude of mixing processes affecting the downcore proxy variations, and 3) the representativity of the discrete sample for the sediment layer, we designed and performed a case study on South China Sea sediment material which was collected using a box corer and which covers the last glacial cycle. Using the radiocarbon content of foraminiferal tests as a tracer of time, we characterize the spatial age-heterogeneity of sediments in a three-dimensional setup. In total, 118 radiocarbon measurements were performed on defined small- and large-volume bulk samples ( similar to 200 specimens each) to investigate the horizontal heterogeneity of the sediment. Additionally, replicated measurements on small numbers of specimens (10 x 5 specimens) were performed to assess the heterogeneity within a sample volume. Visual assessment of X-ray images and a quantitative assessment of the mixing strength show typical mixing from bioturbation corresponding to around 10 cm mixing depth. Notably, our 3D radiocarbon distribution reveals that the horizontal heterogeneity (up to 1,250 years), contributing to the age uncertainty, is several times larger than the typically assumed radiocarbon based age-model error (single errors up to 250 years). Furthermore, the assumption of a perfectly bioturbated layer with no mixing underneath is not met. Our analysis further demonstrates that the age-heterogeneity might be a function of sample size; smaller samples might contain single features from the incomplete mixing and are thus less representative than larger samples. We provide suggestions for future studies, optimal sampling strategies for quantitative paleoclimate reconstructions and realistic uncertainty in age models, as well as discuss possible implications for the interpretation of paleoclimate records.}, language = {en} } @article{DaempflingMielkeKoellneretal.2022, author = {D{\"a}mpfling, Helge L. C. and Mielke, Christian and Koellner, Nicole and Lorenz, Melanie and Rogass, Christian and Altenberger, Uwe and Harlov, Daniel E. and Knoper, Michael}, title = {Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM)}, series = {European journal of mineralogy}, volume = {34}, journal = {European journal of mineralogy}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {0935-1221}, doi = {10.5194/ejm-34-275-2022}, pages = {275 -- 284}, year = {2022}, abstract = {In this study we present a novel method for the automatic detection of minerals and elements using hyperspectral transmittance imaging microscopy measurements of complete thin sections (HyperTIM). This is accomplished by using a hyperspectral camera system that operates in the visible and near-infrared (VNIR) range with a specifically designed sample holder, scanning setup, and a microscope lens. We utilize this method on a monazite ore thin section from Steenkampskraal (South Africa), which we analyzed for the rare earth element (REE)-bearing mineral monazite ((Ce,Nd,La)PO4), with high concentrations of Nd. The transmittance analyses with the hyperspectral VNIR camera can be used to identify REE minerals and Nd in thin sections. We propose a three-point band depth index, the Nd feature depth index (NdFD), and its related product the Nd band depth index (NdBDI), which enables automatic mineral detection and classification for the Nd-bearing monazites in thin sections. In combination with the average concentration of the relative Nd content, it permits a destruction-free, total concentration calculation for Nd across the entire thin section.}, language = {en} } @article{BarbosaCoelhoGusmaoetal.2022, author = {Barbosa, Luis Romero A. and Coelho, Victor Hugo R. and Gusmao, Ana Claudia V. L. F. and Fernandes, Lucila A. E. and da Silva, Bernardo B. and Galvao, Carlos de O. and Caicedo, Nelson O. L. and da Paz, Adriano R. and Xuan, Yunqing and Bertrand, Guillaume F. and Melo, Davi de C. D. and Montenegro, Suzana M. G. L. and Oswald, Sascha E. and Almeida, Cristiano das N.}, title = {A satellite-based approach to estimating spatially distributed groundwater recharge rates in a tropical wet sedimentary region despite cloudy conditions}, series = {Journal of hydrology}, volume = {607}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2022.127503}, pages = {15}, year = {2022}, abstract = {Groundwater recharge (GWR) is one of the most challenging water fluxes to estimate, as it relies on observed data that are often limited in many developing countries. This study developed an innovative water budget method using satellite products for estimating the spatially distributed GWR at monthly and annual scales in tropical wet sedimentary regions despite cloudy conditions. The distinctive features proposed in this study include the capacity to address 1) evapotranspiration estimations in tropical wet regions frequently overlaid by substantial cloud cover; and 2) seasonal root-zone water storage estimations in sedimentary regions prone to monthly variations. The method also utilises satellite-based information of the precipitation and surface runoff. The GWR was estimated and validated for the hydrologically contrasting years 2016 and 2017 over a tropical wet sedimentary region located in North-eastern Brazil, which has substantial potential for groundwater abstraction. This study showed that applying a cloud-cleaning procedure based on monthly compositions of biophysical data enables the production of a reasonable proxy for evapotranspiration able to estimate groundwater by the water budget method. The resulting GWR rates were 219 (2016) and 302 (2017) mm yr(-1), showing good correlations (CC = 0.68 to 0.83) and slight underestimations (PBIAS =-13 to-9\%) when compared with the referenced estimates obtained by the water table fluctuation method for 23 monitoring wells. Sensitivity analysis shows that water storage changes account for +19\% to-22\% of our monthly evaluation. The satellite-based approach consistently demonstrated that the consideration of cloud-cleaned evapotranspiration and root-zone soil water storage changes are essential for a proper estimation of spatially distributed GWR in tropical wet sedimentary regions because of their weather seasonality and cloudy conditions.}, language = {en} } @article{SarrazinKumarBasuetal.2022, author = {Sarrazin, Fanny J. and Kumar, Rohini and Basu, Nandita B. and Musolff, Andreas and Weber, Michael and Van Meter, Kimberly J. and Attinger, Sabine}, title = {Characterizing catchment-scale nitrogen legacies and constraining their uncertainties}, series = {Water resources research}, volume = {58}, journal = {Water resources research}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2021WR031587}, pages = {32}, year = {2022}, abstract = {Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend not only on current but also past N inputs to the landscape, that have accumulated through time in legacy stores (e.g., soil, groundwater). Catchment-scale N models, that are commonly used to investigate in-stream N levels, rarely examine the magnitude and dynamics of legacy components. This study aims to gain a better understanding of the long-term fate of the N inputs and its uncertainties, using a legacy-driven N model (ELEMeNT) in Germany's largest national river basin (Weser; 38,450 km(2)) over the period 1960-2015. We estimate the nine model parameters based on a progressive constraining strategy, to assess the value of different observational data sets. We demonstrate that beyond in-stream N loading, soil N content and in-stream N concentration allow to reduce the equifinality in model parameterizations. We find that more than 50\% of the N surplus denitrifies (1480-2210 kg ha(-1)) and the stream export amounts to around 18\% (410-640 kg ha(-1)), leaving behind as much as around 230-780 kg ha(-1) of N in the (soil) source zone and 10-105 kg ha(-1) in the subsurface. A sensitivity analysis reveals the importance of different factors affecting the residual uncertainties in simulated N legacies, namely hydrologic travel time, denitrification rates, a coefficient characterizing the protection of organic N in source zone and N surplus input. Our study calls for proper consideration of uncertainties in N legacy characterization, and discusses possible avenues to further reduce the equifinality in water quality modeling.}, language = {en} } @article{SchildgenvanderBeekD'Arcyetal.2022, author = {Schildgen, Taylor F. and van der Beek, Peter A. and D'Arcy, Mitch and Roda-Boluda, Duna N. and Orr, Elizabeth N. and Wittmann, Hella}, title = {Quantifying drainage-divide migration from orographic rainfall over geologic timescales}, series = {Earth \& planetary science letters}, volume = {579}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2021.117345}, pages = {13}, year = {2022}, abstract = {Drainage-divide migration, controlled by rock-uplift and rainfall patterns, may play a major role in the geomorphic evolution of mountain ranges. However, divide-migration rates over geologic timescales have only been estimated by theoretical studies and remain empirically poorly constrained. Geomorphological evidence suggests that the Sierra de Aconquija, on the eastern side of the southern Central Andes, northwest Argentina, is undergoing active westward drainage-divide migration. The mountain range has been subjected to steep rock trajectories and pronounced orographic rainfall for the last several million years, presenting an ideal setting for using low-temperature thermochronometric data to explore its topographic evolution. We perform three-dimensional thermal-kinematic modeling of previously published thermochronometric data spanning the windward and leeward sides of the range to explore the most likely structural and topographic evolution of the range. We find that the data can be explained by scenarios involving drainage-divide migration alone, or by scenarios that also involve changes in the structures that have accommodated deformation through time. By combining new Be-10-derived catchment-average denudation rates with geomorphic constraints on probable fault activity, we conclude that the evolution of the range was likely dominated by west-vergent faulting on a high-angle reverse fault underlying the range, together with westward drainage-divide migration at a rate of several km per million years. Our findings place new constraints on the magnitudes and rates of drainage-divide migration in real landscapes, quantify the effects of orographic rainfall and erosion on the topographic evolution of a mountain range, and highlight the importance of considering drainage-divide migration when interpreting thermochronometer age patterns.}, language = {en} } @article{PenaMetzgerHeidbachetal.2022, author = {Pe{\~n}a, Carlos and Metzger, Sabrina and Heidbach, Oliver and Bedford, Jonathan and Bookhagen, Bodo and Moreno, Marcos and Oncken, Onno and Cotton, Fabrice}, title = {Role of poroelasticity during the early postseismic deformation of the 2010 Maule megathrust earthquake}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {9}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {0094-8276}, doi = {10.1029/2022GL098144}, pages = {11}, year = {2022}, abstract = {Megathrust earthquakes impose changes of differential stress and pore pressure in the lithosphere-asthenosphere system that are transiently relaxed during the postseismic period primarily due to afterslip, viscoelastic and poroelastic processes. Especially during the early postseismic phase, however, the relative contribution of these processes to the observed surface deformation is unclear. To investigate this, we use geodetic data collected in the first 48 days following the 2010 Maule earthquake and a poro-viscoelastic forward model combined with an afterslip inversion. This model approach fits the geodetic data 14\% better than a pure elastic model. Particularly near the region of maximum coseismic slip, the predicted surface poroelastic uplift pattern explains well the observations. If poroelasticity is neglected, the spatial afterslip distribution is locally altered by up to +/- 40\%. Moreover, we find that shallow crustal aftershocks mostly occur in regions of increased postseismic pore-pressure changes, indicating that both processes might be mechanically coupled.}, language = {en} } @article{KamjunkeBeckersHerzsprungetal.2022, author = {Kamjunke, Norbert and Beckers, Liza-Marie and Herzsprung, Peter and von T{\"u}mpling, Wolf and Lechtenfeld, Oliver and Tittel, J{\"o}rg and Risse-Buhl, Ute and Rode, Michael and Wachholz, Alexander and Kallies, Rene and Schulze, Tobias and Krauss, Martin and Brack, Werner and Comero, Sara and Gawlik, Bernd Manfred and Skejo, Hello and Tavazzi, Simona and Mariani, Giulio and Borchardt, Dietrich and Weitere, Markus}, title = {Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {828}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2022.154243}, pages = {14}, year = {2022}, abstract = {On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are ex-posed to complex transport and transformation processes. However, detailed process knowledge as revealed by La-grangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phy-toplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll con-centration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition exper-iments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up-to down-stream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.}, language = {en} } @article{HerzschuhLiBoehmeretal.2022, author = {Herzschuh, Ulrike and Li, Chenzhi and Boehmer, Thomas and Postl, Alexander K. and Heim, Birgit and Andreev, Andrei A. and Cao, Xianyong and Wieczorek, Mareike and Ni, Jian}, title = {LegacyPollen 1.0}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-3213-2022}, pages = {3213 -- 3227}, year = {2022}, abstract = {Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.}, language = {en} } @article{StuenziKruseBoikeetal.2022, author = {Stuenzi, Simone Maria and Kruse, Stefan and Boike, Julia and Herzschuh, Ulrike and Oehme, Alexander and Pestryakova, Luidmila A. and Westermann, Sebastian and Langer, Moritz}, title = {Thermohydrological impact of forest disturbances on ecosystem-protected permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {127}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2021JG006630}, pages = {24}, year = {2022}, abstract = {Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44\%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.}, language = {en} } @article{StevanatoBaroniOswaldetal.2022, author = {Stevanato, Luca and Baroni, Gabriele and Oswald, Sascha and Lunardon, Marcello and Mareš, Vratislav and Marinello, Francesco and Moretto, Sandra and Polo, Matteo and Sartori, Paolo and Schattan, Paul and R{\"u}hm, Werner}, title = {An alternative incoming correction for cosmic-ray neutron sensing observations using local muon measurement}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL095383}, pages = {9}, year = {2022}, abstract = {Measuring the variability of incoming neutrons locally would be usefull for the cosmic-ray neutron sensing (CRNS) method. As the measurement of high energy neutrons is not so easy, alternative particles can be considered for such purpose. Among them, muons are particles created from the same cascade of primary cosmic-ray fluxes that generate neutrons at the ground. In addition, they can be easily detected by small and relatively inexpensive detectors. For these reasons they could provide a suitable local alternative to incoming corrections based on remote neutron monitor data. The reported measurements demonstrated that muon detection system can detect incoming cosmic-ray variations locally. Furthermore the precision of this measurement technique is considered adequate for many CRNS applications.}, language = {en} } @article{SvennevigHermannsKeidingetal.2022, author = {Svennevig, Kristian and Hermanns, Reginald L. and Keiding, Marie and Binder, Daniel and Citterio, Michele and Dahl-Jensen, Trine and Mertl, Stefan and S{\o}rensen, Erik Vest and Voss, Peter Henrik}, title = {A large frozen debris avalanche entraining warming permafrost ground-the June 2021 Assapaat landslibe, West Greenland}, series = {Landslides}, volume = {19}, journal = {Landslides}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-510X}, doi = {10.1007/s10346-022-01922-7}, pages = {2549 -- 2567}, year = {2022}, abstract = {A large landslide (frozen debris avalanche) occurred at Assapaat on the south coast of the Nuussuaq Peninsula in Central West Greenland on June 13, 2021, at 04:04 local time. We present a compilation of available data from field observations, photos, remote sensing, and seismic monitoring to describe the event. Analysis of these data in combination with an analysis of pre- and post-failure digital elevation models results in the first description of this type of landslide. The frozen debris avalanche initiated as a 6.9 * 10(6) m(3) failure of permafrozen talus slope and underlying colluvium and till at 600-880 m elevation. It entrained a large volume of permafrozen colluvium along its 2.4 km path in two subsequent entrainment phases accumulating a total volume between 18.3 * 10(6) and 25.9 * 10(6) m(3). About 3.9 * 10(6) m(3) is estimated to have entered the Vaigat strait; however, no tsunami was reported, or is evident in the field. This is probably because the second stage of entrainment along with a flattening of slope angle reduced the mobility of the frozen debris avalanche. We hypothesise that the initial talus slope failure is dynamically conditioned by warming of the ice matrix that binds the permafrozen talus slope. When the slope ice temperature rises to a critical level, its shear resistance is reduced, resulting in an unstable talus slope prone to failure. Likewise, we attribute the large-scale entrainment to increasing slope temperature and take the frozen debris avalanche as a strong sign that the permafrost in this region is increasingly at a critical state. Global warming is enhanced in the Arctic and frequent landslide events in the past decade in Western Greenland let us hypothesise that continued warming will lead to an increase in the frequency and magnitude of these types of landslides. Essential data for critical arctic slopes such as precipitation, snowmelt, and ground and surface temperature are still missing to further test this hypothesis. It is thus strongly required that research funds are made available to better predict the change of landslide threat in the Arctic.}, language = {en} } @article{KraemerGelbrechtPavithranetal.2022, author = {Kr{\"a}mer, Hauke Kai and Gelbrecht, Maximilian and Pavithran, Induja and Sujith, Ravindran and Marwan, Norbert}, title = {Optimal state space reconstruction via Monte Carlo decision tree search}, series = {Nonlinear Dynamics}, volume = {108}, journal = {Nonlinear Dynamics}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0924-090X}, doi = {10.1007/s11071-022-07280-2}, pages = {1525 -- 1545}, year = {2022}, abstract = {A novel idea for an optimal time delay state space reconstruction from uni- and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in which each leaf holds a specific value of the objective function. By using a Monte Carlo ansatz, the proposed algorithm populates the tree with many leafs by computing different possible embedding paths and the final embedding is chosen as that particular path, which ends at the leaf with the lowest achieved value of the objective function. The method aims to prevent getting stuck in a local minimum of the objective function and can be used in a modular way, enabling practitioners to choose a statistic for possible delays in each embedding cycle as well as a suitable objective function themselves. The proposed method guarantees the optimization of the chosen objective function over the parameter space of the delay embedding as long as the tree is sampled sufficiently. As a proof of concept, we demonstrate the superiority of the proposed method over the classical time delay embedding methods using a variety of application examples. We compare recurrence plot-based statistics inferred from reconstructions of a Lorenz-96 system and highlight an improved forecast accuracy for map-like model data as well as for palaeoclimate isotope time series. Finally, we utilize state space reconstruction for the detection of causality and its strength between observables of a gas turbine type thermoacoustic combustor.}, language = {en} } @article{OuDaoutWeissetal.2022, author = {Ou, Qi and Daout, Simon and Weiss, Jonathan R. and Shen, Lin and Lazecky, Milan and Wright, Tim J. and Parsons, Barry E.}, title = {Large-Scale interseismic strain mapping of the NE Tibetan Plateau from Sentinel-1 Interferometry}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2022JB024176}, pages = {29}, year = {2022}, abstract = {The launches of the Sentinel-1 synthetic aperture radar satellites in 2014 and 2016 started a new era of high-resolution velocity and strain rate mapping for the continents. However, multiple challenges exist in tying independently processed velocity data sets to a common reference frame and producing high-resolution strain rate fields. We analyze Sentinel-1 data acquired between 2014 and 2019 over the northeast Tibetan Plateau, and develop new methods to derive east and vertical velocities with similar to 100 m resolution and similar to 1 mm/yr accuracy across an area of 440,000 km(2). By implementing a new method of combining horizontal gradients of filtered east and interpolated north velocities, we derive the first similar to 1 km resolution strain rate field for this tectonically active region. The strain rate fields show concentrated shear strain along the Haiyuan and East Kunlun Faults, and local contractional strain on fault junctions, within the Qilianshan thrusts, and around the Longyangxia Reservoir. The Laohushan-Jingtai creeping section of the Haiyuan Fault is highlighted in our data set by extremely rapid strain rates. Strain across unknown portions of the Haiyuan Fault system, including shear on the eastern extension of the Dabanshan Fault and contraction at the western flank of the Quwushan, highlight unmapped tectonic structures. In addition to the uplift across most of the lowlands, the vertical velocities also contain climatic, hydrological or anthropogenic-related deformation signals. We demonstrate the enhanced view of large-scale active tectonic processes provided by high-resolution velocities and strain rates derived from Sentinel-1 data and highlight associated wide-ranging research applications.}, language = {en} } @article{CesarFernandezLecomteVignonietal.2022, author = {Cesar Fern{\´a}ndez, Guillermo and Lecomte, Karina and Vignoni, Paula and Soto-Rueda, Eliana Marcela and Coria, Silvia H. and Lirio, Juan Manuel and Mlewski, Estela Cecilia}, title = {Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems from James Ross Archipelago (West Antarctica)}, series = {Polar biology : current research and development in science and technology}, volume = {45}, journal = {Polar biology : current research and development in science and technology}, number = {3}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0722-4060}, doi = {10.1007/s00300-021-02997-z}, pages = {405 -- 418}, year = {2022}, abstract = {The James Ross archipelago houses numerous lakes and ponds. In this region, a vast diatom and cyanobacterial variety has been reported; however, the prokaryotic diversity in microbial mats from these lakes remains poorly explored. Here, a high-throughput sequencing of 16S rRNA gene in microbial mats from Lake Bart-Roja in James Ross Island and lakes Pan Negro and North Pan Negro located in Vega Island was performed. Combined with mineralogical and environmental characteristics, we analyzed the diversity and structure of the microbial communities. Sequences assigned to Archaea were extremely low, while Bacteria domain prevailed with the abundance of Proteobacteria (mostly Betaproteobacteriales) followed by Bacteroidetes, Verrucomicrobia, Firmicutes, and Cyanobacteria. Local environmental conditions, such as conductivity and Eh, provided differential microbial assemblages that might have implications in the oligotrophic status of the lakes. Consequently, a clear segregation at the family level was observed. In this sense, the assigned diversity was related to taxa recognized as denitrifiers and sulfur oxidizers. Particularly, in Lake Pan Negro sulfur-reducing and methanogenic representatives were also found and positively correlate with alkalinity and water depth. Moreover, Deinococcus-Thermus was observed in Lake Bart-Roja, while Melainabacteria (Cyanobacteria)-poorly reported in Antarctic mats-was detected in Lake Pan Negro. Epsilonbacteraeota was exclusively found in this lake, suggesting new potential phylotypes. This study contributes to the understanding of the diversity, composition, and structure of Antarctic benthic microbial ecosystems and provides highly valuable information, which can be used as a proxy to evaluate environmental changes affecting Antarctic microbiota.}, language = {en} } @article{GomezZapataPittoreCottonetal.2022, author = {Gomez-Zapata, Juan Camilo and Pittore, Massimiliano and Cotton, Fabrice and Lilienkamp, Henning and Shinde, Simantini and Aguirre, Paula and Santa Maria, Hernan}, title = {Epistemic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss models}, series = {Bulletin of Earthquake Engineering}, volume = {20}, journal = {Bulletin of Earthquake Engineering}, number = {5}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-021-01312-9}, pages = {2401 -- 2438}, year = {2022}, abstract = {In seismic risk assessment, the sources of uncertainty associated with building exposure modelling have not received as much attention as other components related to hazard and vulnerability. Conventional practices such as assuming absolute portfolio compositions (i.e., proportions per building class) from expert-based assumptions over aggregated data crudely disregard the contribution of uncertainty of the exposure upon earthquake loss models. In this work, we introduce the concept that the degree of knowledge of a building stock can be described within a Bayesian probabilistic approach that integrates both expert-based prior distributions and data collection on individual buildings. We investigate the impact of the epistemic uncertainty in the portfolio composition on scenario-based earthquake loss models through an exposure-oriented logic tree arrangement based on synthetic building portfolios. For illustrative purposes, we consider the residential building stock of Valparaiso (Chile) subjected to seismic ground-shaking from one subduction earthquake. We have found that building class reconnaissance, either from prior assumptions by desktop studies with aggregated data (top-down approach), or from building-by-building data collection (bottom-up approach), plays a fundamental role in the statistical modelling of exposure. To model the vulnerability of such a heterogeneous building stock, we require that their associated set of structural fragility functions handle multiple spectral periods. Thereby, we also discuss the relevance and specific uncertainty upon generating either uncorrelated or spatially cross-correlated ground motion fields within this framework. We successively show how various epistemic uncertainties embedded within these probabilistic exposure models are differently propagated throughout the computed direct financial losses. This work calls for further efforts to redesign desktop exposure studies, while also highlighting the importance of exposure data collection with standardized and iterative approaches.}, language = {en} } @article{MonhonvalStraussThomasetal.2022, author = {Monhonval, Arthur and Strauss, Jens and Thomas, Maxime and Hirst, Catherine and Titeux, Hugues and Louis, Justin and Gilliot, Alexia and D'Aische, Eleonore du Bois and Pereira, Benoit and Vandeuren, Aubry and Grosse, Guido and Schirrmeister, Lutz and Jongejans, Loeka Laura and Ulrich, Mathias and Opfergelt, Sophie}, title = {Thermokarst processes increase the supply of stabilizing surfaces and elements (Fe, Mn, Al, and Ca) for mineral-organic carbon interactions}, series = {Permafrost and periglacial processes}, volume = {33}, journal = {Permafrost and periglacial processes}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.2162}, pages = {452 -- 469}, year = {2022}, abstract = {The stabilizing properties of mineral-organic carbon (OC) interactions have been studied in many soil environments (temperate soils, podzol lateritic soils, and paddy soils). Recently, interest in their role in permafrost regions is increasing as permafrost was identified as a hotspot of change. In thawing ice-rich permafrost regions, such as the Yedoma domain, 327-466 Gt of frozen OC is buried in deep sediments. Interactions between minerals and OC are important because OC is located very near the mineral matrix. Mineral surfaces and elements could mitigate recent and future greenhouse gas emissions through physical and/or physicochemical protection of OC. The dynamic changes in redox and pH conditions associated with thermokarst lake formation and drainage trigger metal-oxide dissolution and precipitation, likely influencing OC stabilization and microbial mineralization. However, the influence of thermokarst processes on mineral-OC interactions remains poorly constrained. In this study, we aim to characterize Fe, Mn, Al, and Ca minerals and their potential protective role for OC. Total and selective extractions were used to assess the crystalline and amorphous oxides or complexed metal pools as well as the organic acids found within these pools. We analyzed four sediment cores from an ice-rich permafrost area in Central Yakutia, which were drilled (i) in undisturbed Yedoma uplands, (ii) beneath a recent lake formed within Yedoma deposits, (iii) in a drained thermokarst lake basin, and (iv) beneath a mature thermokarst lake from the early Holocene period. We find a decrease in the amount of reactive Fe, Mn, Al, and Ca in the deposits on lake formation (promoting reduction reactions), and this was largely balanced by an increase in the amount of reactive metals in the deposits on lake drainage (promoting oxidation reactions). We demonstrate an increase in the metal to C molar ratio on thermokarst process, which may indicate an increase in metal-C bindings and could provide a higher protective role against microbial mineralization of organic matter. Finally, we find that an increase in mineral-OC interactions corresponded to a decrease in CO2 and CH4 gas emissions on thermokarst process. Mineral-OC interactions could mitigate greenhouse gas production from permafrost thaw as soon as lake drainage occurs.}, language = {en} } @article{KatzenbergerLevermannScheweetal.2022, author = {Katzenberger, Anja and Levermann, Anders and Schewe, Jacob and Pongratz, Julia}, title = {Intensification of very wet monsoon seasons in India under global warming}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {15}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2022GL098856}, pages = {10}, year = {2022}, abstract = {Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase.}, language = {en} } @article{AllroggenHeinckeKoyanetal.2022, author = {Allroggen, Niklas and Heincke, Bjorn H. and Koyan, Philipp and Wheeler, Walter and Ronning, Jan S.}, title = {3D ground-penetrating radar attribute classification}, series = {Geophysics}, volume = {87}, journal = {Geophysics}, number = {4}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2021-0651.1}, pages = {WB19 -- WB30}, year = {2022}, abstract = {Ground-penetrating radar (GPR) is a method that can provide detailed information about the near subsurface in sedimentary and carbonate environments. The classical interpretation of GPR data (e.g., based on manual feature selection) often is labor-intensive and limited by the experience of the intercally used for seismic interpretation, can provide faster, more repeatable, and less biased interpretations. We have recorded a 3D GPD data set collected across a paleokarst breccia pipe in the Billefjorden area on Spitsbergen, Svalbard. After performing advanced processing, we compare the results of a classical GPR interpretation to the results of an attribute-based classification. Our attribute classification incorporates a selection of dip and textural attributes as the input for a k-means clustering approach. Similar to the results of the classical interpretation, the resulting classes differentiate between undisturbed strata and breccias or fault zones. The classes also reveal details inside the breccia pipe that are not discerned in the classical fer that the intrapipe GPR facies result from subtle differences, such as breccia lithology, clast size, or pore-space filling.}, language = {en} } @article{IllienSensSchoenfelderAndermannetal.2022, author = {Illien, Luc and Sens-Sch{\"o}nfelder, Christoph and Andermann, Christoff and Marc, Odin and Cook, Kristen L. and Adhikari, Lok Bijaya and Hovius, Niels}, title = {Seismic velocity recovery in the subsurface}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2021JB023402}, pages = {18}, year = {2022}, abstract = {Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behavior has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations delta v retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 M-w 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behavior we inferred from a previously calibrated groundwater model. The fitting of the delta v data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behavior, interpreted as an enhanced permeability in the shallow subsurface, lasts for similar to 6 months and is shorter than the damage relaxation (similar to 1 yr). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.}, language = {en} } @article{RodriguezMoskwaOsesetal.2022, author = {Rodriguez, Victoria and Moskwa, Lisa-Marie and Oses, Romulo and K{\"u}hn, Peter and Riveras-Mu{\~n}oz, Nicol{\´a}s and Seguel, Oscar and Scholten, Thomas and Wagner, Dirk}, title = {Impact of climate and slope aspects on the composition of soil bacterial communities involved in pedogenetic processes along the chilean coastal cordillera}, series = {Microorganisms}, volume = {10}, journal = {Microorganisms}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms10050847}, pages = {20}, year = {2022}, abstract = {Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes.}, language = {en} } @article{PlatzWeckmannPeketal.2022, author = {Platz, Anna and Weckmann, Ute and Pek, Josef and Kovacikova, Svetlana and Klanica, Radek and Mair, Johannes and Aleid, Basel}, title = {3D imaging of the subsurface electrical resistivity structure in West Bohemia/Upper Palatinate covering mofettes and quaternary volcanic structures by using magnetotellurics}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {833}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2022.229353}, pages = {20}, year = {2022}, abstract = {The region of West Bohemia and Upper Palatinate belongs to the West Bohemian Massif. The study area is situated at the junction of three different Variscan tectonic units and hosts the ENE-WSW trending Ohre Rift as well as many different fault systems. The entire region is characterized by ongoing magmatic processes in the intra-continental lithospheric mantle expressed by a series of phenomena, including e.g. the occurrence of repeated earthquake swarms and massive degassing of mantle derived CO2 in form of mineral springs and mofettes. Ongoing active tectonics is mainly manifested by Cenozoic volcanism represented by different Quaternary volcanic structures. All these phenomena make the Ohre Rift a unique target area for European intra-continental geo-scientific research. With magnetotelluric (MT) measurements we image the subsurface distribution of the electrical resistivity and map possible fluid pathways. Two-dimensional (2D) inversion results by Munoz et al. (2018) reveal a conductive channel in the vicinity of the earthquake swarm region that extends from the lower crust to the surface forming a pathway for fluids into the region of the mofettes. A second conductive channel is present in the south of their model; however, their 2D inversions allow ambiguous interpretations of this feature. Therefore, we conducted a large 3D MT field experiment extending the study area towards the south. The 3D inversion result matches well with the known geology imaging different fluid/magma reservoirs at crust-mantle depth and mapping possible fluid pathways from the reservoirs to the surface feeding known mofettes and spas. A comparison of 3D and 2D inversion results suggests that the 2D inversion results are considerably characterized by 3D and off-profile structures. In this context, the new results advocate for the swarm earthquakes being located in the resistive host rock surrounding the conductive channels; a finding in line with observations e.g. at the San Andreas Fault, California.}, language = {en} } @article{NguyenKumarMusolffetal.2022, author = {Nguyen, Tam and Kumar, Rohini and Musolff, Andreas and Lutz, Stefanie R. and Sarrazin, Fanny and Attinger, Sabine and Fleckenstein, Jan H.}, title = {Disparate Seasonal Nitrate Export From Nested Heterogeneous Subcatchments Revealed With StorAge Selection Functions}, series = {Water resources research}, volume = {58}, journal = {Water resources research}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2021WR030797}, pages = {20}, year = {2022}, abstract = {Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applied at the catchment scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we parameterized SAS functions in a spatially explicit way to understand the internal catchment responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied in a nested mesoscale catchment (457 km(2)), consisting of a mountainous partly forested, partly agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural subcatchment. The model captured flow and nitrate concentration dynamics not only at the catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing dynamics and nitrate export among headwater and lowland subcatchments. The headwater subcatchment has high seasonal variation in subsurface mixing schemes and younger water in discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing and much older water in discharge. Consequently, nitrate concentration in discharge from the headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment is stable in time. The temporally varying responses of headwater and lowland subcatchments alternate the dominant contribution to nitrate export in high and low-flow periods between subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling provides useful information about internal catchment functioning, helping to develop or evaluate spatial management practices.}, language = {en} } @article{ButerHeckmannFilisettietal.2022, author = {Buter, Anuschka and Heckmann, Tobias and Filisetti, Lorenzo and Savi, Sara and Mao, Luca and Gems, Bernhard and Comiti, Francesco}, title = {Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {402}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2022.108128}, pages = {17}, year = {2022}, abstract = {In the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave and rainstorm conditions with snowmelt and glacier-melt periods. For each scenario and each sub-basin, the sediment transport network and related catchment characteristics were analysed. To compare the effects of the scenarios on functional connectivity, we introduced a connectivity degree, calculated based on the area of the landforms involved in sediment cascades. Results indicate that the area of the basin connected to its outlet in terms of sediment transport might feature a six-fold increase in case of rainstorm conditions compared to "average " meteorological conditions assumed for the base scenario. Furthermore, markedly different effects of climate change on sediment connectivity are expected between the two sub-catchments due to their contrasting morphological and lithological characteristics, in terms of relative importance of rainfall triggered colluvial processes vs temperature-driven proglacial fluvial dynamics.}, language = {en} } @article{FoongPradhanFroeretal.2022, author = {Foong, Adrian and Pradhan, Prajal and Fr{\"o}r, Oliver and Kropp, J{\"u}rgen P.}, title = {Adjusting agricultural emissions for trade matters for climate change mitigation}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-30607-x}, pages = {10}, year = {2022}, abstract = {Reducing greenhouse gas emissions in food systems is becoming more challenging as food is increasingly consumed away from producer regions, highlighting the need to consider emissions embodied in trade in agricultural emissions accounting. To address this, our study explores recent trends in trade-adjusted agricultural emissions of food items at the global, regional, and national levels. We find that emissions are largely dependent on a country's consumption patterns and their agricultural emission intensities relative to their trading partners'. The absolute differences between the production-based and trade-adjusted emissions accounting approaches are especially apparent for major agricultural exporters and importers and where large shares of emission-intensive items such as ruminant meat, milk products and rice are involved. In relative terms, some low-income and emerging and developing economies with consumption of high emission intensity food products show large differences between approaches. Similar trends are also found under various specifications that account for trade and re-exports differently. These findings could serve as an important element towards constructing national emissions reduction targets that consider trading partners, leading to more effective emissions reductions overall.}, language = {en} } @article{DaskalopoulouD'AlessandroLongoetal.2022, author = {Daskalopoulou, Kyriaki and D'Alessandro, Walter and Longo, Manfredi and Pecoraino, Giovannella and Calabrese, Sergio}, title = {Shallow sea gas manifestations in the Aegean Sea (Greece) as natural analogs to study ocean acidification}, series = {Frontiers in Marine Science}, volume = {8}, journal = {Frontiers in Marine Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-7745}, doi = {10.3389/fmars.2021.775247}, pages = {19}, year = {2022}, abstract = {The concepts of CO2 emission, global warming, climate change, and their environmental impacts are of utmost importance for the understanding and protection of the ecosystems. Among the natural sources of gases into the atmosphere, the contribution of geogenic sources plays a crucial role. However, while subaerial emissions are widely studied, submarine outgassing is not yet well understood. In this study, we review and catalog 122 literature and unpublished data of submarine emissions distributed in ten coastal areas of the Aegean Sea. This catalog includes descriptions of the degassing vents through in situ observations, their chemical and isotopic compositions, and flux estimations. Temperatures and pH data of surface seawaters in four areas affected by submarine degassing are also presented. This overview provides useful information to researchers studying the impact of enhanced seawater CO2 concentrations related either to increasing CO2 levels in the atmosphere or leaking carbon capture and storage systems.}, language = {en} } @article{OrtizSaezAlvaradoetal.2022, author = {Ortiz, Gustavo and Saez, Mauro and Alvarado, Patricia and Rivas, Carolina and Garc{\´i}a, V{\´i}ctor Hugo and Alonso, Ricardo and Zullo, Fernando Morales}, title = {Seismotectonic characterization of the 1948 (M-W 6.9) Anta earthquake Santa Barbara System, central Andes broken foreland of northwestern Argentina}, series = {Journal of South American earth sciences}, volume = {116}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2022.103822}, pages = {15}, year = {2022}, abstract = {The region of the Andean back-arc of northwestern Argentina has been struck by several magnitude >= 6 crustal earthquakes since the first historically recorded event in 1692. One of these events corresponds to the Anta earthquake on 25 August 1948, with epicenter in the Santa Barbara System causing three deaths and severe damage in Salta and Jujuy provinces with maximum Modified Mercalli seismic intensities (MMI) of IX. We collected and digitized analog seismograms of this earthquake from worldwide seismic observatories in order to perform first-motion analysis and modeling of long-period teleseismic P-waveforms. Our results indicate a simple seismic source of M0 = 2.85 x 1019 N m consistent with a moment magnitude Mw = 6.9. We have also tested for the focal depth determining a shallow source at 8 km with a reverse focal mechanism solution with a minor dextral strike-slip component (strike 20 degrees, dip 30 degrees, rake 120 degrees) from the best fit of waveforms. Using magnitude size empirical relationships, the comparison of the obtained Mw 6.9 magnitude value and the ca. 10,000 km2 area of MMI >= IX from our seismic intensity map, which was obtained from newspaper and many historical reports, indicates a rupture length of 42 +/- 8 km for the Anta earthquake. We show our results in a 3D geological model around the epicentral area, which integrates modern seismicity, geological data, and information of a previously studied east-west cross section located a few kilometers south of the 1948 epicenter. The integration of all available information provides evidence of the re-activation of the Pie de la Sierra del Gallo fault during the 1948 Mw 6.9 shallow earthquake; this thrust fault bounds the Santa Barbara System along its western foothill.}, language = {en} } @article{MuellerNeugebauerBenDoretal.2022, author = {M{\"u}ller, Daniela and Neugebauer, Ina and Ben Dor, Yoav and Enzel, Yehouda and Schwab, Markus Julius and Tjallingii, Rik and Brauer, Achim}, title = {Phases of stability during major hydroclimate change ending the Last Glacial in the Levant}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-10217-9}, pages = {12}, year = {2022}, abstract = {In-depth understanding of the reorganization of the hydrological cycle in response to global climate change is crucial in highly sensitive regions like the eastern Mediterranean, where water availability is a major factor for socioeconomic and political development. The sediments of Lake Lisan provide a unique record of hydroclimatic change during the last glacial to Holocene transition (ca. 24-11 ka) with its tremendous water level drop of similar to 240 m that finally led to its transition into the present hypersaline water body-the Dead Sea. Here we utilize high-resolution sedimentological analyses from the marginal terraces and deep lake to reconstruct an unprecedented seasonal record of the last millennia of Lake Lisan. Aragonite varve formation in intercalated intervals of our record demonstrates that a stepwise long-term lake level decline was interrupted by almost one millennium of rising or stable water level. Even periods of pronounced water level drops indicated by gypsum deposition were interrupted by decades of positive water budgets. Our results thus highlight that even during major climate change at the end of the last glacial, decadal to millennial periods of relatively stable or positive moisture supply occurred which could have been an important premise for human sedentism.}, language = {en} } @article{YenvonSpechtLinetal.2022, author = {Yen, Ming-Hsuan and von Specht, Sebastian and Lin, Yen-Yu and Cotton, Fabrice and Ma, Kuo-Fong}, title = {Within- and between-event variabilities of strong-velocity pulses of moderate earthquakes within dense seismic arrays}, series = {Bulletin of the Seismological Society of America}, volume = {112}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120200376}, pages = {361 -- 380}, year = {2022}, abstract = {Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (M-w 6-7) and characterize ground- motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the freq uency-wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.}, language = {en} } @article{StolpmannMollenhauerMorgensternetal.2022, author = {Stolpmann, Lydia and Mollenhauer, Gesine and Morgenstern, Anne and Hammes, Jens S. and Boike, Julia and Overduin, Pier Paul and Grosse, Guido}, title = {Origin and pathways of dissolved organic carbon in a small catchment in the Lena River Delta}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.759085}, pages = {15}, year = {2022}, abstract = {The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km(2)) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (delta O-18 and delta D) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L-1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 C-14 y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km(-2) per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River.}, language = {en} } @article{WolfHuismansBraunetal.2022, author = {Wolf, Sebastian G. and Huismans, Ritske S. and Braun, Jean and Yuan, Xiaoping}, title = {Topography of mountain belts controlled by rheology and surface processes}, series = {Nature : the international weekly journal of science}, volume = {606}, journal = {Nature : the international weekly journal of science}, number = {7914}, publisher = {Nature portfolio}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-022-04700-6}, pages = {516 -- 521}, year = {2022}, abstract = {It is widely recognized that collisional mountain belt topography is generated by crustal thickening and lowered by river bedrock erosion, linking climate and tectonics(1-4). However, whether surface processes or lithospheric strength control mountain belt height, shape and longevity remains uncertain. Additionally, how to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years remains enigmatic. Here we investigate mountain belt growth and decay using a new coupled surface process(5,6) and mantle-scale tectonic model(7). End-member models and the new non-dimensional Beaumont number, Bm, quantify how surface processes and tectonics control the topographic evolution of mountain belts, and enable the definition of three end-member types of growing orogens: type 1, non-steady state, strength controlled (Bm > 0.5); type 2, flux steady state(8), strength controlled (Bm approximate to 0.4-0.5); and type 3, flux steady state, erosion controlled (Bm < 0.4). Our results indicate that tectonics dominate in Himalaya-Tibet and the Central Andes (both type 1), efficient surface processes balance high convergence rates in Taiwan (probably type 2) and surface processes dominate in the Southern Alps of New Zealand (type 3). Orogenic decay is determined by erosional efficiency and can be subdivided into two phases with variable isostatic rebound characteristics and associated timescales. The results presented here provide a unified framework explaining how surface processes and lithospheric strength control the height, shape, and longevity of mountain belts.}, language = {en} } @article{MacdonaldMerzGuseetal.2022, author = {Macdonald, Elena and Merz, Bruno and Guse, Bj{\"o}rn and Wietzke, Luzie and Ullrich, Sophie and Kemter, Matthias and Ahrens, Bodo and Vorogushyn, Sergiy}, title = {Event and catchment controls of heavy tail behavior of floods}, series = {Water resources research}, volume = {58}, journal = {Water resources research}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2021WR031260}, pages = {25}, year = {2022}, abstract = {In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for general conclusions. We compile a wide range of event and catchment characteristics and investigate their association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different aggregations of event characteristics, multiple linear regression models, as well as random forests, are constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality, and catchment size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it does influence flood magnitudes.}, language = {en} } @article{JamalreyhaniRezapourCescaetal.2022, author = {Jamalreyhani, Mohammadreza and Rezapour, Mehdi and Cesca, Simone and Dahm, Torsten and Heimann, Sebastian and Sudhaus, Henriette and Isken, Marius Paul}, title = {Insight into the 2017-2019 Lurestan arc seismic sequence (Zagros, Iran); complex earthquake interaction in the basement and sediments}, series = {Geophysical journal international}, volume = {230}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggac057}, pages = {114 -- 130}, year = {2022}, abstract = {Despite its high-seismogenic potential, the details of the seismogenic processes of Zagros Simply Folded Belt (SFB) remains debated. Three large earthquakes (M-w 7.3, 5.9 and 6.3) struck in the Lurestan arc of the Zagros SFB in 2017 and 2018. The sequence was recorded by seismic stations at regional, and teleseismic distances. Coseismic surface displacements, measured by Sentinel-1A/B satellites, provide additional data and a unique opportunity to study these earthquakes in detail. Here, we complement previous studies of the coseismic slip distribution of the 12 November 2017 M-w 7.3 Ezgeleh earthquake by a detailed analysis of its aftershocks, and we analysed the rupture process of the two interrelated earthquakes (25 August 2018 M-w 5.9 Tazehabad and the 25 November 2018 M-w 6.3 Sarpol-e Zahab earthquakes). We model the surface displacements obtained from Interferometric Synthetic Aperture Radar (InSAR) measurements and seismic records. We conduct non-linear probabilistic optimizations based on joint InSAR and seismic data to obtain finite-fault rupture of these earthquakes. The Lurestan arc earthquakes were followed by a sustained aftershock activity, with 133 aftershocks exceeding M-n 4.0 until 30 December 2019. We rely on the permanent seismic networks of Iran and Iraq to relocate similar to 700 M-n 3 + events and estimate moment tensor solutions for 85 aftershocks down to M-w 4.0. The 2017 Ezgeleh earthquake has been considered to activate a low-angle (similar to 17 degrees) dextral-thrust fault at the depth of 10-20 km. However, most of its aftershocks have shallow centroid depths (8-12 km). The joint interpretation of finite source models, moment tensor and hypocentral location indicate that the 2018 Tazehabad and Sarpol-e Zahab earthquakes ruptured different strike-slip structures, providing evidence for the activation of the sinistral and dextral strike-slip faults, respectively. The deformation in the Lurestan arc is seismically accommodated by a complex fault system involving both thrust and strike-slip faults. Knowledge about the deformation characteristics is important for the understanding of crustal shortening, faulting and hazard and risk assessment in this region.}, language = {en} } @article{MelchertWischhoeferKnoblauchetal.2022, author = {Melchert, Jan Olaf and Wischh{\"o}fer, Philipp and Knoblauch, Christian and Eckhardt, Tim and Liebner, Susanne and Rethemeyer, Janet}, title = {Sources of CO2 Produced in Freshly Thawed Pleistocene-Age Yedoma Permafrost}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.737237}, pages = {13}, year = {2022}, abstract = {The release of greenhouse gases from the large organic carbon stock in permafrost deposits in the circumarctic regions may accelerate global warming upon thaw. The extent of this positive climate feedback is thought to be largely controlled by the microbial degradability of the organic matter preserved in these sediments. In addition, weathering and oxidation processes may release inorganic carbon preserved in permafrost sediments as CO2, which is generally not accounted for. We used C-13 and C-14 analysis and isotopic mass balances to differentiate and quantify organic and inorganic carbon released as CO2 in the field from an active retrogressive thaw slump of Pleistocene-age Yedoma and during a 1.5-years incubation experiment. The results reveal that the dominant source of the CO2 released from freshly thawed Yedoma exposed as thaw mound is Pleistocene-age organic matter (48-80\%) and to a lesser extent modern organic substrate (3-34\%). A significant portion of the CO2 originated from inorganic carbon in the Yedoma (17-26\%). The mixing of young, active layer material with Yedoma at a site on the slump floor led to the preferential mineralization of this young organic carbon source. Admixtures of younger organic substrates in the Yedoma thaw mound were small and thus rapidly consumed as shown by lower contributions to the CO2 produced during few weeks of aerobic incubation at 4 degrees C corresponding to approximately one thaw season. Future CO2 fluxes from the freshly thawed Yedoma will contain higher proportions of ancient inorganic (22\%) and organic carbon (61-78\%) as suggested by the results at the end, after 1.5 years of incubation. The increasing contribution of inorganic carbon during the incubation is favored by the accumulation of organic acids from microbial organic matter degradation resulting in lower pH values and, in consequence, in inorganic carbon dissolution. Because part of the inorganic carbon pool is assumed to be of pedogenic origin, these emissions would ultimately not alter carbon budgets. The results of this study highlight the preferential degradation of younger organic substrates in freshly thawed Yedoma, if available, and a substantial release of CO2 from inorganic sources.}, language = {en} } @article{CrucesZabalaRitterWeckmannetal.2022, author = {Cruces-Zabala, Jos{\´e} Alejandro and Ritter, Oliver and Weckmann, Ute and Tietze, Kristina and Meqbel, Naser M. and Audemard, Franck and Schmitz, Michael}, title = {Three-dimensional magnetotelluric imaging of the Merida Andes, Venezuela}, series = {Journal of South American earth sciences}, volume = {114}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2022.103711}, pages = {17}, year = {2022}, abstract = {The 100 km wide Merida Andes extend from the Colombian/Venezuelan border to the Coastal Cordillera. The mountain chain and its associated major strike-slip fault systems in western Venezuela formed due to oblique convergence of the Caribbean with the South American Plates and the north-eastwards expulsion of the North Andean Block. Due to the limited knowledge of lithospheric structures related to the formation of the Merida Andes research projects have been developed to illuminate this zone with deep geophysical data. In this study, we present three-dimensional inversion of broadband magnetotelluric data, collected along a 240 km long profile crossing the Merida Andes and the Maracaibo and Barinas-Apure foreland basins. The distribution of the stations limits resolution of the model to off-profile features. Combining 3D inversion of synthetic data sets derived from 3D modelling with 3D inversion of measured data, we could derive a 10 to 15 km wide corridor with good lateral resolution to develop hypotheses about the origin of deep-reaching anomalies of high electrical conductivity. The Merida Andes appear generally as electrically resistive structures, separated by anomalies associated with the most important fault systems of the region, the Bocono and Valera faults. Sensitivity tests suggest that the Valera Fault reaches to depths of up to 12 km and the Bocono Fault to more than 35 km depth. Both structures are connected to a sizeable conductor located east of the profile at 12-15 km depth. We propose that the high conductivity associated with this off-profile conductor may be related to the detachment of the Trujillo Block. We also identified a conductive zone that correlates spatially with the location of a gravity low, possibly representing a SE tilt of the Maracaibo Triangular Block under the mountain chain to great depths (>30 km). The relevance of these tectonic blocks in our models at crustal depths seems to be consistent with proposed theories that describe the geodynamics of western Venezuela as dominated by floating blocks or orogens. Our results stress the importance of the Trujillo Block for the current tectonic evolution of western Venezuela and confirm the relevance of the Bocono Fault carrying deformation to the lower crust and upper mantle. The Barinas-Apure and the Maracaibo sedimentary basins are imaged as electrically conductive with depths of 4 to 5 km and 5 to 10 km, respectively. The Barinas-Apure basin is imaged as a simple 1D structure, in contrast to the Maracaibo Basin, where a series of conductive and resistive bodies could be related to active deformation causing the juxtaposition of older geological formations and younger basin sediments.}, language = {en} } @article{ValenzuelaMalebranCescaLopezCominoetal.2022, author = {Valenzuela-Malebran, Carla and Cesca, Simone and Lopez-Comino, Jos{\´e} {\´A}ngel and Zeckra, Martin and Kr{\"u}ger, F. and Dahm, Torsten}, title = {Source mechanisms and rupture processes of the Jujuy seismic nest, Chile-Argentina border}, series = {Journal of South American earth sciences}, volume = {117}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2022.103887}, pages = {13}, year = {2022}, abstract = {The Altiplano-Puna plateau, in Central Andes, is the second-largest continental plateau on Earth, extending between 22 degrees and 27 degrees S at an average altitude of 4400 m. The Puna plateau has been formed in consequence of the subduction of the oceanic Nazca Plate beneath the continental South American plate, which has an average crustal thickness of 50 km at this location. A large seismicity cluster, the Jujuy cluster, is observed at depth of 150-250 km beneath the central region of the Puna plateau. The cluster is seismically very active, with hundreds of earthquakes reported and a peak magnitude MW 6.6 on 25th August 2006. The cluster is situated in one of three band of intermediate-depth focus seismicity, which extend parallel to the trench roughly North to South. It has been hypothesized that the Jujuy cluster could be a seismic nest, a compact seismogenic region characterized by a high stationary activity relative to its surroundings. In this study, we collected more than 40 years of data from different catalogs and proof that the cluster meets the three conditions of a seismic nest. Compared to other known intermediate depth nests at Hindu Kush (Afganisthan) or Bucaramanga (Colombia), the Jujuy nest presents an outstanding seismicity rate, with more than 100 M4+ earthquakes per year. We additionally performed a detailed analysis of the rupture process of some of the largest earthquakes in the nest, by means of moment tensor inversion and directivity analysis. We focused on the time period 2017-2018, where the seismic monitoring was the most extended. Our results show that earthquakes in the nest take place within the eastward subducting oceanic plate, but rupture along sub-horizontal planes dipping westward. We suggest that seismicity at Jujuy nest is controlled by dehydration processes, which are also responsible for the generation of fluids ascending to the crust beneath the Puna volcanic region. We use the rupture plane and nest geometry to provide a constraint to maximal expected magnitude, which we estimate as MW -6.7.}, language = {en} } @article{CarvalhoBrosinskyFoersteretal.2022, author = {Carvalho, Thayslan and Brosinsky, Arlena and Foerster, Saskia and Teixeira, Adunias and Medeiros, Pedro Henrique Augusto}, title = {Reservoir sediment characterisation by diffuse reflectance spectroscopy in a semiarid region to support sediment reuse for soil fertilization}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {22}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-022-03281-1}, pages = {2557 -- 2577}, year = {2022}, abstract = {Purpose: Soil erosion by water yields sediment to surface reservoirs, reducing their storage capacities, changing their geometry, and degrading water quality. Sediment reuse, i.e., fertilization of agricultural soils with the nutrient-enriched sediment from reservoirs, has been proposed as a recovery strategy. However, the sediment needs to meet certain criteria. In this study, we characterize sediments from the densely dammed semiarid Northeast Brazil by VNIR-SWIR spectroscopy and assess the effect of spectral resolution and spatial scale on the accuracy of N, P, K, C, electrical conductivity, and clay prediction models. Methods Sediment was collected in 10 empty reservoirs, and physical and chemical laboratory analyses as well as spectral measurements were performed. The spectra, initially measured at 1 nm spectral resolution, were resampled to 5 and 10 nm, and samples were analysed for both high and low spectral resolution at three spatial scales, namely (1) reservoir, (2) catchment, and (3) regional scale. Results Partial least square regressions performed from good to very good in the prediction of clay and electrical conductivity from reservoir (<40 km(2)) to regional (82,500 km(2)) scales. Models for C and N performed satisfactorily at the reservoir scale, but degraded to unsatisfactory at the other scales. Models for P and K were more unstable and performed from unsatisfactorily to satisfactorily at all scales. Coarsening spectral resolution by up to 10 nm only slightly degrades the models' performance, indicating the potential of characterizing sediment from spectral data captured at lower resolutions, such as by hyperspectral satellite sensors. Conclusion: By reducing the costly and time-consuming laboratory analyses, the method helps to promote the sediment reuse as a practice of soil and water conservation.}, language = {en} } @article{KumarGuntuAgarwaletal.2022, author = {Kumar, Satish and Guntu, Ravi Kumar and Agarwal, Ankit and Villuri, Vasant Govind Kumar and Pasupuleti, Srinivas and Kaushal, Deo Raj and Gosian, Ashwin Kumar and Bronstert, Axel}, title = {Multi-objective optimization for stormwater management by green-roofs and infiltration trenches to reduce urban flooding in central Delhi}, series = {Journal of hydrology}, volume = {606}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2022.127455}, pages = {16}, year = {2022}, abstract = {Urban surface runoff management via best management practices (BMP) and low impact development (LID) has earned significant recognition owing to positive environmental and ecological impacts. However, due to the complexity of the parameters involved, the estimation of LID efficiency in attenuating the urban surface runoff at the watershed scale is challenging. A planning analysis of employing Green Roofs and Infiltration Trenches as BMPs/LIDs practices for urban surface runoff control is presented in this study. A multi-objective optimization decision-making framework is established by coupling SWMM (Storm Water Management Model) with NSGA-II models to check the performance of BMPs/LIDs concerning the cost-benefit analysis of LID at the watershed scale. Two urbanized areas belonging to Central Delhi in India were used as case studies. The results showed that the SWMM model is useful in simulating optimization problems for managing urban surface runoff. The optimum scenarios efficiently minimized the urban runoff volume while maintaining the BMPs/LIDs implementation costs and size. With BMPs/LIDs implementation, the reduction in runoff volume increases as expenses increase initially; however, there is no noticeable reduction in flood volume after a certain threshold. Contrasted with the haphazard arrangement of BMPs/LIDs, the proposed approach demonstrates 22\%-24\% runoff reductions for the same expenditures in watershed 1 and 23\%-26\% in watershed 2. The result of the study provides insights into planning and management of the urban surface runoff control with LID practices. The proposed framework assists the hydrologists in optimum selection and placements of BMPs/LIDs practices to acquire the most extreme ecological advantages with the least expenses.}, language = {en} }