@article{MarciszJasseyKosakyanetal.2020, author = {Marcisz, Katarzyna and Jassey, Vincent E. J. and Kosakyan, Anush and Krashevska, Valentyna and Lahr, Daniel J. G. and Lara, Enrique and Lamentowicz, Lukasz and Lamentowicz, Mariusz and Macumber, Andrew and Mazei, Yuri and Mitchell, Edward A. D. and Nasser, Nawaf A. and Patterson, R. Timothy and Roe, Helen M. and Singer, David and Tsyganov, Andrey N. and Fournier, Bertrand}, title = {Testate amoeba functional traits and their use in paleoecology}, series = {Frontiers in Ecology and Evolution}, volume = {8}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2020.575966}, pages = {28}, year = {2020}, abstract = {This review provides a synthesis of current knowledge on the morphological and functional traits of testate amoebae, a polyphyletic group of protists commonly used as proxies of past hydrological changes in paleoecological investigations from peatland, lake sediment and soil archives. A trait-based approach to understanding testate amoebae ecology and paleoecology has gained in popularity in recent years, with research showing that morphological characteristics provide complementary information to the commonly used environmental inferences based on testate amoeba (morpho-)species data. We provide a broad overview of testate amoeba morphological and functional traits and trait-environment relationships in the context of ecology, evolution, genetics, biogeography, and paleoecology. As examples we report upon previous ecological and paleoecological studies that used trait-based approaches, and describe key testate amoebae traits that can be used to improve the interpretation of environmental studies. We also highlight knowledge gaps and speculate on potential future directions for the application of trait-based approaches in testate amoeba research.}, language = {en} } @article{JosephVarino2021, author = {Joseph, May and Varino, Sofia}, title = {Multidirectional Thalassology}, series = {Shima : the international journal of research into Island cultures / Island Cultures Research Centre (ICRC)}, volume = {15}, journal = {Shima : the international journal of research into Island cultures / Island Cultures Research Centre (ICRC)}, number = {1}, publisher = {ICRC}, address = {Sydney}, issn = {1834-6049}, doi = {10.21463/shima.118}, pages = {256 -- 272}, year = {2021}, abstract = {This article merges discourses from Indian Ocean studies, Island Studies, performance art and decolonial methodologies to offer interdisciplinary ways of thinking about La Serenissima and its navigational histories. It is a transdisciplinary speculative entry, part empirical, part analytical, part applied phenomenology. We write this as a collaboration between two members of the Harmattan Theater company, a New York City based environmental performance ensemble applying environmental theory to site-specific performances engaging oceans and islands. The article is driven by the following research questions: What are the historic relationalities between the Venice lagoon and the Indian Ocean? How has the acqua alto flooding of Venice, accompanied by the mnemonic histories of the Venetian lagoon, impacted understandings of lagoon cultures in the global South, particularly the Malabar Coast of South Asia? This question has propelled the artistic and academic research of May Joseph and Sofia Varino across environmental history, island studies and performance. Drawing on histories of Venetian navigation and lagoon culture, Joseph and Varino propose a comparative lagoon aesthetics, one that would link two archipelagic regions, the Venetian Lagoon and the extended archipelagic region of the Laccadive Sea of India. While we believe a contemporary archipelagic study connecting these two regions does not currently exist, the historical archives suggest otherwise. We draw on the Venetian Camaldolese monk and cartographer Fra Mauro's Mappa Mundi from the 15th Century to initiate this comparative dialogue between North/Southisland ecologies, seafaring histories and ocean futures affected by climate change and rising sea levels. This research is part of a book that Joseph and Varino are co-writing on islands, archipelagos, coastal regions and climate change, drawing on a ten-year collaboration working with large-scale site-specific environmental performance as research, activism and embodied phenomenology.}, language = {en} } @article{StillmanRailsbackGiskeetal.2015, author = {Stillman, Richard A. and Railsback, Steven Floyd and Giske, Jarl and Berger, Uta and Grimm, Volker}, title = {Making Predictions in a Changing World: The Benefits of Individual-Based Ecology}, series = {Bioscience}, volume = {65}, journal = {Bioscience}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biu192}, pages = {140 -- 150}, year = {2015}, abstract = {Ecologists urgently need a better ability to predict how environmental change affects biodiversity. We examine individual-based ecology (IBE), a research paradigm that promises better a predictive ability by using individual-based models (IBMs) to represent ecological dynamics as arising from how individuals interact with their environment and with each other. A key advantage of IBMs is that the basis for predictions-fitness maximization by individual organisms-is more general and reliable than the empirical relationships that other models depend on. Case studies illustrate the usefulness and predictive success of long-term IBE programs. The pioneering programs had three phases: conceptualization, implementation, and diversification. Continued validation of models runs throughout these phases. The breakthroughs that make IBE more productive include standards for describing and validating IBMs, improved and standardized theory for individual traits and behavior, software tools, and generalized instead of system-specific IBMs. We provide guidelines for pursuing IBE and a vision for future IBE research.}, language = {en} } @article{SpijkermanWackerWeithoffetal.2012, author = {Spijkerman, Elly and Wacker, Alexander and Weithoff, Guntram and Leya, Thomas}, title = {Elemental and fatty acid composition of snow algae in Arctic habitats}, series = {Frontiers in microbiology}, volume = {3}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2012.00380}, pages = {15}, year = {2012}, abstract = {Red, orange or green snow is the macroscopic phenomenon comprising different eukaryotic algae. Little is known about the ecology and nutrient regimes in these algal communities. Therefore, eight snow algal communities from five intensively tinted snow fields in western Spitsbergen were analysed for nutrient concentrations and fatty acid (FA) composition. To evaluate the importance of a shift from green to red forms on the FA-variability of the field samples, four snow algal strains were grown under nitrogen replete and moderate light (+N+ML) or N-limited and high light (-N+HL) conditions. All eight field algal communities were dominated by red and orange cysts. Dissolved nutrient concentration of the snow revealed a broad range of NH4+ (<0.005-1.2 mg NI-1) and only low PO43- (< 18 mu g P I-1) levels. The external nutrient concentration did not reflect cellular nutrient ratios as C:N and C:P ratios of the communities were highest at locations containing relatively high concentrations of NH4- and PO43-. Molar N:P ratios ranged from 11 to 21 and did not suggest clear limitation of a single nutrient. On a per carbon basis, we found a 6-fold difference in total FA content between the eight snow algal communities, ranging from 50 to 300 mg FA g C-1. In multivariate analyses total FA content opposed the cellular N:C quota and a large part of the FA variability among field locations originated from the abundant FAs C181n-9, C18 2n-6, and C183n-3. Both field samples and snow algal strains grown under -N+HL conditions had high concentrations of C181n-9. FAs possibly accumulated due to the cessation of growth. Differences in color and nutritional composition between patches of snow algal communities within one snow field were not directly related to nutrient conditions. We propose that the highly patchy distribution of snow algae within and between snow fields may also result from differences in topographical and geological parameters such as slope, melting water rivulets, and rock formation.}, language = {en} }