@phdthesis{Hoechner2010, author = {H{\"o}chner, Andreas}, title = {GPS based analysis of earthquake induced phenomena at the Sunda Arc}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53166}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Indonesia is one of the countries most prone to natural hazards. Complex interaction of several tectonic plates with high relative velocities leads to approximately two earthquakes with magnitude Mw>7 every year, being more than 15\% of the events worldwide. Earthquakes with magnitude above 9 happen far more infrequently, but with catastrophic effects. The most severe consequences thereby arise from tsunamis triggered by these subduction-related earthquakes, as the Sumatra-Andaman event in 2004 showed. In order to enable efficient tsunami early warning, which includes the estimation of wave heights and arrival times, it is necessary to combine different types of real-time sensor data with numerical models of earthquake sources and tsunami propagation. This thesis was created as a result of the GITEWS project (German Indonesian Tsunami Early Warning System). It is based on five research papers and manuscripts. Main project-related task was the development of a database containing realistic earthquake scenarios for the Sunda Arc. This database provides initial conditions for tsunami propagation modeling used by the simulation system at the early warning center. An accurate discretization of the subduction geometry, consisting of 25x150 subfaults was constructed based on seismic data. Green's functions, representing the deformational response to unit dip- and strike slip at the subfaults, were computed using a layered half-space approach. Different scaling relations for earthquake dimensions and slip distribution were implemented. Another project-related task was the further development of the 'GPS-shield' concept. It consists of a constellation of near field GPS-receivers, which are shown to be very valuable for tsunami early warning. The major part of this thesis is related to the geophysical interpretation of GPS data. Coseismic surface displacements caused by the 2004 Sumatra earthquake are inverted for slip at the fault. The effect of different Earth layer models is tested, favoring continental structure. The possibility of splay faulting is considered and shown to be a secondary order effect in respect to tsunamigenity for this event. Tsunami models based on source inversions are compared to satellite radar altimetry observations. Postseismic GPS time series are used to test a wide parameter range of uni- and biviscous rheological models of the asthenosphere. Steady-state Maxwell rheology is shown to be incompatible with near-field GPS data, unless large afterslip, amounting to more than 10\% of the coseismic moment is assumed. In contrast, transient Burgers rheology is in agreement with data without the need for large aseismic afterslip. Comparison to postseismic geoid observation by the GRACE satellites reveals that even with afterslip, the model implementing Maxwell rheology results in amplitudes being too small, and thus supports a biviscous asthenosphere. A simple approach based on the assumption of quasi-static deformation propagation is introduced and proposed for inversion of coseismic near-field GPS time series. Application of this approach to observations from the 2004 Sumatra event fails to quantitatively reconstruct the rupture propagation, since a priori conditions are not fulfilled in this case. However, synthetic tests reveal the feasibility of such an approach for fast estimation of rupturing properties.}, language = {en} } @phdthesis{Brune2009, author = {Brune, Sascha}, title = {Landslide generated tsunamis : numerical modeling and real-time prediction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32986}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Submarine landslides can generate local tsunamis posing a hazard to human lives and coastal facilities. Two major related problems are: (i) quantitative estimation of tsunami hazard and (ii) early detection of the most dangerous landslides. This thesis focuses on both those issues by providing numerical modeling of landslide-induced tsunamis and by suggesting and justifying a new method for fast detection of tsunamigenic landslides by means of tiltmeters. Due to the proximity to the Sunda subduction zone, Indonesian coasts are prone to earthquake, but also landslide tsunamis. The aim of the GITEWS-project (German-Indonesian Tsunami Early Warning System) is to provide fast and reliable tsunami warnings, but also to deepen the knowledge about tsunami hazards. New bathymetric data at the Sunda Arc provide the opportunity to evaluate the hazard potential of landslide tsunamis for the adjacent Indonesian islands. I present nine large mass movements in proximity to Sumatra, Java, Sumbawa and Sumba, whereof the largest event displaced 20 kmĀ³ of sediments. Using numerical modeling, I compute the generated tsunami of each event, its propagation and runup at the coast. Moreover, I investigate the age of the largest slope failures by relating them to the Great 1977 Sumba earthquake. Continental slopes off northwest Europe are well known for their history of huge underwater landslides. The current geological situation west of Spitsbergen is comparable to the continental margin off Norway after the last glaciation, when the large tsunamigenic Storegga slide took place. The influence of Arctic warming on the stability of the Svalbard glacial margin is discussed. Based on new geophysical data, I present four possible landslide scenarios and compute the generated tsunamis. Waves of 6 m height would be capable of reaching northwest Europe threatening coastal areas. I present a novel technique to detect large submarine landslides using an array of tiltmeters, as a possible tool in future tsunami early warning systems. The dislocation of a large amount of sediment during a landslide produces a permanent elastic response of the earth. I analyze this response with a mathematical model and calculate the theoretical tilt signal. Applications to the hypothetical Spitsbergen event and the historical Storegga slide show tilt signals exceeding 1000 nrad. The amplitude of landslide tsunamis is controlled by the product of slide volume and maximal velocity (slide tsunamigenic potential). I introduce an inversion routine that provides slide location and tsunamigenic potential, based on tiltmeter measurements. The accuracy of the inversion and of the estimated tsunami height near the coast depends on the noise level of tiltmeter measurements, the distance of tiltmeters from the slide, and the slide tsunamigenic potential. Finally, I estimate the applicability scope of this method by employing it to known landslide events worldwide.}, language = {en} }