@phdthesis{Dronov2007, author = {Dronov, Roman}, title = {Multi-component protein films by layer-by-layer : assembly and electron transfer}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17281}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Electron transfer phenomena in proteins represent one of the most common types of biochemical reactions. They play a central role in energy conversion pathways in living cells, and are crucial components in respiration and photosynthesis. These complex biochemical reaction cascades consist of a series of proteins and protein complexes that couple a charge transfer to different forms of chemical energy. The efficiency and sophisticated optimisation of signal transfer in these natural redox chains has inspired engineering of artificial architectures mimicking essential properties of their natural analogues. Implementation of direct electron transfer (DET) in protein assemblies was a breakthrough in bioelectronics, providing a simple and efficient way for coupling biological recognition events to a signal transducer. DET avoids the use of redox mediators, reducing potential interferences and side reactions, as well as being more compatible with in vivo conditions. However, only a few haem proteins, including the redox protein cytochrome c (cyt.c), and blue copper enzymes show efficient DET on different kinds of electrodes. Previous investigations with cyt.c have mainly focused on heterogeneous electron transfer of monolayers of this protein on gold. An important advance was the fabrication of cyt.c multilayers by electrostatic layer-by-layer self-assembly. The ease of fabrication, the stability, and the controllable permeability of polyelectrolyte multilayers have made them particularly attractive for electroanalytical applications. With cyt.c and sulfonated polyaniline it was for the first time possible that fully electro-active multilayers of the redox protein could be prepared. This approach was extended to design an analytical signal chain based on multilayers of cyt.c and xanthine oxidase (XOD). The system does not need an external mediator but relies on an in situ generation of a mediating radical and thus allows a signal transfer from hypoxanthine via the substrate converting enzyme and cyt.c to the electrode. Another kind of a signal chain is based on assembling proteins in complexes on electrodes in such a way that a direct protein-protein electron transfer becomes feasible. This design does not need a redox mediator in analogy to natural protein communication. For this purpose, cyt.c and the enzyme bilirubin oxidase (BOD, EC 1.3.3.5) are co-immobilized in a self-assembled polyelectrolyte multilayer on gold electrodes. Although these two proteins are not natural reaction partners, the protein architecture facilitates an electron transfer from the electrode via multiple protein layers to molecular oxygen resulting in a significant catalytic reduction current. Finally, we describe a novel strategy for multi-protein layer-by-layer self-assembly combining cyt.c with an enzyme sulfite oxidase (SOx) without use of any additional polymer. Electrostatic interactions between these two proteins with rather separated pI values during the assembly process from a low ionic strength buffer were found sufficient for the layer-by-layer deposition of the both biomolecules. It is anticipated that the concepts described in this work will stimulate further progress in multilayer design of even more complex biomimetic signal cascades taking advantage of direct communication between proteins.}, language = {en} } @phdthesis{Sapei2007, author = {Sapei, Lanny}, title = {Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15883}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Equisetum spp. (horsetail / "Schachtelhalm") is the only surviving genus of the primitive Sphenopsids vascular plants which reached their zenith during the Carboniferous era. It is an herbaceous plant and is distinguished by jointed stems with fused whorl of nodal leaves. The plant has been used for scouring kitchen utensils and polishing wood during the past time due to its high silica encrustations in the epidermis. Equisetum hyemale (scouring rush) can accumulate silica up to 16\% dry weight in its tissue, which makes this plant an interesting candidate as a renewable resource of silica for the synthesis of biomorphous ceramics. The thesis comprises a comprehensive experimental study of silica accumulations in E.hyemale using different characterisation techniques at all hierarchical levels. The obtained results shed light on the local distribution, chemical form, crystallinity, and nanostructure of biogenic silica in E.hyemale which were quite unclear until now. Furthermore, isolation of biogenic silica from E.hyemale to obtain high grade mesoporous silica with high purity is investigated. Finally, syntheses of silicon carbide (b-SiC) by a direct thermoconversion process of E.hyemale is attempted, which is a promising material for high performance ceramics. It is found that silica is deposited continuously on the entire epidermal layer with the highest concentration on the knobs. The highest silicon content is at the knob tips (≈ 33\%), followed by epidermal flank (≈ 17\%), and inner lower knob (≈ 6\%), whereas there is almost no silicon found in the interior parts. Raman spectroscopy reveals the presence of at least two silica modifications in E.hyemale. The first type is pure hydrated amorphous silica restricted to the knob tips. The second type is accumulated on the entire continuous outer layer adjacent to the epidermis cell walls. It is lacking silanol groups and is intimately associated with polysaccharides (cellulose, hemicellulose, pectin) and inorganic compounds. Silica deposited in E.hyemale is found to be mostly amorphous with almost negligible amounts of crystalline silica in the form of a-quartz (< 7\%). The silica primary particles have a plate-like shape with a thickness of about 2 nm. Pure mesoporous amorphous silica with an open surface area up to 400 m2/g can be obtained from E.hyemale after leaching the plant with HCl to remove the inorganic impurities followed by a calcination treatment. The optimum calcination temperature appears to be around 500°C. Calcination of untreated E.hyemale causes a collapse of the biogenic silica structure which is mainly attributed to the detrimental action of alkali ions present in the native plant. Finally, pure b-SiC with a surface area of about 12 m2/g is obtained upon direct pyrolysis of HCl-treated E.hyemale samples in argon atmosphere. The original structure of native E.hyemale is substantially retained in the biomorphous b-SiC. The results of this thesis lead to a better understanding of the silicification process and allow to draw conclusions about the role of silica in E.hyemale. In particular, a templating role of the plant biopolymers for the synthesis of the nanostructured silica within the plant body can be deduced. Moreover, the high grade ultrafine amorphous silica isolated from E.hyemale promises applications as adsorbent and catalyst support and as silica source for the fabrication of silica-based composites. The synthesis of biomorphous b-SiC from sustainable and low-cost E.hyemale is still in its initial stage. The present thesis demonstrates the principal possibility of carbothermal synthesis of SiC from E.hyemale with the prospect of potential applications, for instance as refractory materials, catalyst supports, or high performance advanced ceramics.}, language = {en} } @phdthesis{Bhattacharryya2006, author = {Bhattacharryya, Saroj Kumar}, title = {Development of detector for analytical ultracentrifuge. - [korr. Fassung]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-8215}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {In this work approaches for new detection system development for an Analytical Ultracentrifuge (AUC) were explored. Unlike its counterpart in chromatography fractionation techniques, the use of a Multidetection system for AUC has not yet been implemented to full extent despite its potential benefit. In this study we tried to couple existing fundamental spectroscopic and scattering techniques that are used in day to day science as tool for extracting analyte information. Trials were performed for adapting Raman, Light scattering and UV/Vis (with possibility to work with the whole range of wavelengths) to AUC. Conclusions were drawn for Raman and Light scattering to be a possible detection system for AUC, while the development for a fast fiber optics based multiwavelength detector was completed. The multiwavelength detector demonstrated the capability of data generation matching the literature and reference measurement data and faster data collection than that of the commercial instrument. It became obvious that with the generation of data in 3-D space in the UV/Vis detection system, the user can select the wavelength for the evaluation of experimental results as the data set contains the whole range of information from UV/Vis wavelength. The detector showed the data generation with much faster speed unlike the commercial instruments. The advantage of fast data generation was exemplified with the evaluation of data for a mixture of three colloids. These data were in conformity with measurement results from normal radial experiments and without significant diffusion broadening. Thus conclusions were drawn that with our designed Multiwavelength detector, meaningful data in 3-D space can be collected with much faster speed of data generation.}, subject = {Ultrazentrifuge}, language = {en} }