@phdthesis{Kiemel2023, author = {Kiemel, Katrin}, title = {Zooplankton adaptations and community dynamics in space and time}, school = {Universit{\"a}t Potsdam}, year = {2023}, abstract = {In times of ongoing biodiversity loss, understanding how communities are structured and what mechanisms and local adaptations underlie the patterns we observe in nature is crucial for predicting how future ecological and anthropogenic changes might affect local and regional biodiversity. Aquatic zooplankton are a group of primary consumers that represent a critical link in the food chain, providing nutrients for the entire food web. Thus, understanding the adaptability and structure of zooplankton communities is essential. In this work, the genetic basis for the different temperature adaptations of two seasonally shifted (i.e., temperature-dependent) occurring freshwater rotifers of a formerly cryptic species complex (Brachionus calyciflorus) was investigated to understand the overall genetic diversity and evolutionary scenario for putative adaptations to different temperature regimes. Furthermore, this work aimed to clarify to what extent the different temperature adaptations may represent a niche partitioning process thus enabling co-existence. The findings were then embedded in a metacommunity context to understand how zooplankton communities assemble in a kettle hole metacommunity located in the northeastern German "Uckermark" and which underlying processes contribute to the biodiversity patterns we observe. Using a combined approach of newly generated mitochondrial resources (genomes/cds) and the analysis of a candidate gene (Heat Shock Protein 40kDa) for temperature adaptation, I showed that the global representatives of B. calyciflorus s.s.. are genetically more similar than B. fernandoi (average pairwise nucleotide diversity: 0.079 intraspecific vs. 0.257 interspecific) indicating that both species carry different standing genetic variation. In addition to differential expression in the thermotolerant B. calyciflorus s.s. and thermosensitive B. fernandoi, the HSP 40kDa also showed structural variation with eleven fixed and six positively selected sites, some of which are located in functional areas of the protein. The estimated divergence time of ~ 25-29 Myr combined with the fixed sites and a prevalence of ancestral amino acids in B. calyciflorus s.s. indicate that B. calyciflorus s.s. remained in the ancestral niche, while B. fernandoi partitioned into a new niche. The comparison of mitochondrial and nuclear markers (HPS 40kDa, ITS1, COI) revealed a hybridisation event between the two species. However, as hybridisation between the two species is rare, it can be concluded that the temporally isolated niches (i.e., seasonal-shifted occurrence) they inhabit based on their different temperature preferences most likely represent a pre-zygotic isolation mechanism that allows sympatric occurrence while maintaining species boundaries. To determine the processes underlying zooplankton community assembly, a zooplankton metacommunity comprising 24 kettle holes was sampled over a two-year period. Active (i.e., water samples) and dormant communities (i.e., dormant eggs hatched from sediment) were identified using a two-fragment DNA metabarcoding approach (COI and 18S). Species richness and diversity as well as community composition were analysed considering spatial, temporal and environmental parameters. The analysis revealed that environmental filtering based on parameters such as pH, size and location of the habitat patch (i.e., kettle hole) and surrounding field crops largely determined zooplankton community composition (explained variance: Bray-Curtis dissimilarities: 10.5\%; Jaccard dissimilarities: 12.9\%), indicating that adaptation to a particular habitat is a key feature of zooplankton species in this system. While the spatial configuration of the kettle holes played a minor role (explained variance: Bray-Curtis dissimilarities: 2.8\% and Jaccard dissimilarities: 5.5\%), the individual kettle hole sites had a significant influence on the community composition. This suggests monopolisation/priority effects (i.e., dormant communities) of certain species in individual kettle holes. As environmental filtering is the dominating process structuring zooplankton communities, this system could be significantly influenced by future land-use change, pollution and climate change.}, language = {en} } @phdthesis{Stark2021, author = {Stark, Markus}, title = {Implications of local and regional processes on the stability of metacommunities in diverse ecosystems}, doi = {10.25932/publishup-52639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526399}, school = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2021}, abstract = {Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in \$\beta\$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity.}, language = {en} }