@unpublished{Schulze1999, author = {Schulze, Bert-Wolfgang}, title = {Operator algebras with symbol hierarchies on manifolds with singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25647}, year = {1999}, abstract = {Problems for elliptic partial differential equations on manifolds M with singularities M' (here with piece-wise smooth geometry)are studied in terms of pseudo-differential algebras with hierarchies of symbols that consist of scalar and operator-valued components. Classical boundary value problems (with or without the transmission property) belong to the examples. They are a model for operator algebras on manifolds M with higher "polyhedral" singularities. The operators are block matrices that have upper left corners containing the pseudo-differential operators on the regular M\M' (plus certain Mellin and Green summands) and are degenerate (in streched coordinates) in a typical way near M'. By definition M' is again a manifold with singularities. The same is true of M'', and so on. The block matrices consist of trace, potential and Mellin and Green operators, acting between weighted Sobolev spaces on M(j) and M(k), with 0 ≤ j, k ≤ ord M; here M(0) denotes M, M(1) denotes M', etc. We generate these algebras, including their symbol hierarchies, by iterating so-called "edgifications" and "conifications" os algebras that have already been constructed, and we study ellipicity, parametrics and Fredholm property within these algebras.}, language = {en} } @unpublished{Schulze1999, author = {Schulze, Bert-Wolfgang}, title = {An algebra of boundary value problems not requiring Shapiro-Lopatinskil conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25596}, year = {1999}, abstract = {We construct an algebra of pseudo-differential boundary value problems that contains the classical Shapiro-Lopatinskij elliptic problems as well as all differential elliptic problems of Dirac type with APS boundary conditions, together with their parametrices. Global pseudo-differential projections on the boundary are used to define ellipticity and to show the Fredholm property in suitable scales of spaces.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin1999, author = {Nazaikinskii, Vladimir E. and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25582}, year = {1999}, abstract = {In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1.}, language = {en} } @unpublished{SchulzeNazaikinskiiSternin1999, author = {Schulze, Bert-Wolfgang and Nazaikinskii, Vladimir E. and Sternin, Boris}, title = {On the homotopy classification of elliptic operators on manifolds with singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25574}, year = {1999}, abstract = {We study the homotopy classification of elliptic operators on manifolds with singularities and establish necessary and sufficient conditions under which the classification splits into terms corresponding to the principal symbol and the conormal symbol.}, language = {en} } @unpublished{SchulzeSterninSavin1999, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Savin, Anton}, title = {The homotopy classification and the index of boundary value problems for general elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25568}, year = {1999}, abstract = {We give the homotopy classification and compute the index of boundary value problems for elliptic equations. The classical case of operators that satisfy the Atiyah-Bott condition is studied first. We also consider the general case of boundary value problems for operators that do not necessarily satisfy the Atiyah-Bott condition.}, language = {en} } @unpublished{RabinovichSchulzeTarkhanov1999, author = {Rabinovich, Vladimir and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Boundary value problems in domains with corners}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25552}, year = {1999}, abstract = {We describe Fredholm boundary value problems for differential equations in domains with intersecting cuspidal edges on the boundary.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1999, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A general index formula on tropic manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25501}, year = {1999}, abstract = {We solve the index problem for general elliptic pseudodifferential operators on toric manifolds with conical points.}, language = {en} } @unpublished{SchulzeSavinSternin1999, author = {Schulze, Bert-Wolfgang and Savin, Anton and Sternin, Boris}, title = {Elliptic operators in subspaces and the eta invariant}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25496}, year = {1999}, abstract = {The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theory with coefficients Zsub(n). In particular, it is shown that the group K(T*M,Zsub(n)) is realized by elliptic operators (symbols) acting in appropriate subspaces.}, language = {en} } @unpublished{SchulzeShlapunovTarkhanov1999, author = {Schulze, Bert-Wolfgang and Shlapunov, Alexander and Tarkhanov, Nikolai Nikolaevich}, title = {Regularisation of mixed boundary problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25454}, year = {1999}, abstract = {We show an application of the spectral theorem in constructing approximate solutions of mixed boundary value problems for elliptic equations.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin1999, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization and the wave packet transform}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25447}, year = {1999}, language = {en} } @unpublished{SchroheSchulze1999, author = {Schrohe, Elmar and Schulze, Bert-Wolfgang}, title = {Edge-degenerate boundary value problems on cones}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25436}, year = {1999}, abstract = {We consider edge-degenerate families of pseudodifferential boundary value problems on a semi-infinite cylinder and study the behavior of their push-forwards as the cylinder is blown up to a cone near infinity. We show that the transformed symbols belong to a particularly convenient symbol class. This result has applications in the Fredholm theory of boundary value problems on manifolds with edges.}, language = {en} } @unpublished{SchulzeTarkhanov1999, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Ellipticity and parametrices on manifolds with caspidal edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25411}, year = {1999}, language = {en} } @unpublished{RabinovichSchulzeTarkhanov1998, author = {Rabinovich, Vladimir and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Boundary value problems in cuspidal wedges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25363}, year = {1998}, abstract = {The paper is devoted to pseudodifferential boundary value problems in domains with cuspidal wedges. Concerning the geometry we even admit a more general behaviour, namely oscillating cuspidal wedges. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to edges.}, language = {en} } @unpublished{SchulzeNazaikinskiiSternin1998, author = {Schulze, Bert-Wolfgang and Nazaikinskii, Vladimir and Sternin, Boris}, title = {A semiclassical quantization on manifolds with singularities and the Lefschetz Formula for Elliptic Operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25296}, year = {1998}, abstract = {For general endomorphisms of elliptic complexes on manifolds with conical singularities, the semiclassical asymptotics of the Atiyah-Bott-Lefschetz number is calculated in terms of fixed points of the corresponding canonical transformation of the symplectic space.}, language = {en} } @unpublished{SavinSchulzeSternin1998, author = {Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {On the invariant index formulas for spectral boundary value problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25285}, year = {1998}, abstract = {In the paper we study the possibility to represent the index formula for spectral boundary value problems as a sum of two terms, the first one being homotopy invariant of the principal symbol, while the second depends on the conormal symbol of the problem only. The answer is given in analytical, as well as in topological terms.}, language = {en} } @unpublished{SchulzeNazaikinskiiSternin1998, author = {Schulze, Bert-Wolfgang and Nazaikinskii, Vladimir and Sternin, Boris}, title = {The index of quantized contact transformations on manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25276}, year = {1998}, abstract = {The quantization of contact transformations of the cosphere bundle over a manifold with conical singularities is described. The index of Fredholm operators given by this quantization is calculated. The answer is given in terms of the Epstein-Melrose contact degree and the conormal symbol of the corresponding operator.}, language = {en} } @unpublished{SchulzeTarkhanov1998, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Elliptic complexes of pseudodifferential operators on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25257}, year = {1998}, abstract = {On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fr{\´e}chet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.}, language = {en} } @unpublished{BuchholzSchulze1998, author = {Buchholz, Thilo and Schulze, Bert-Wolfgang}, title = {Volterra operators and parabolicity : anisotropic pseudo-differential operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25231}, year = {1998}, abstract = {Parabolic equations on manifolds with singularities require a new calculus of anisotropic pseudo-differential operators with operator-valued symbols. The paper develops this theory along the lines of sn abstract wedge calculus with strongly continuous groups of isomorphisms on the involved Banach spaces. The corresponding pseodo-diferential operators are continuous in anisotropic wedge Sobolev spaces, and they form an alegbra. There is then introduced the concept of anisotropic parameter-dependent ellipticity, based on an order reduction variant of the pseudo-differential calculus. The theory is appled to a class of parabolic differential operators, and it is proved the invertibility in Sobolev spaces with exponential weights at infinity in time direction.}, language = {en} } @unpublished{NacinovichSchulzeTarkhanov1998, author = {Nacinovich, Mauro and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On carleman formulas for the dolbeault cohomology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25224}, year = {1998}, abstract = {We discuss the Cauchy problem for the Dolbeault cohomology in a domain of C n with data on a part of the boundary. In this setting we introduce the concept of a Carleman function which proves useful in the study of uniqueness. Apart from an abstract framework we show explicit Carleman formulas for the Dolbeault cohomology.}, language = {en} } @unpublished{SchulzeTarkhanov1998, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Euler solutions of pseudodifferential equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25211}, year = {1998}, abstract = {We consider a homogeneous pseudodifferential equation on a cylinder C = IR x X over a smooth compact closed manifold X whose symbol extends to a meromorphic function on the complex plane with values in the algebra of pseudodifferential operators over X. When assuming the symbol to be independent on the variable t element IR, we show an explicit formula for solutions of the equation. Namely, to each non-bijectivity point of the symbol in the complex plane there corresponds a finite-dimensional space of solutions, every solution being the residue of a meromorphic form manufactured from the inverse symbol. In particular, for differential equations we recover Euler's theorem on the exponential solutions. Our setting is model for the analysis on manifolds with conical points since C can be thought of as a 'stretched' manifold with conical points at t = -infinite and t = infinite.}, language = {en} } @unpublished{PaneahSchulze1998, author = {Paneah, Boris and Schulze, Bert-Wolfgang}, title = {On the existence of smooth solutions of the dirichlet problem for hyperbolic : differential equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25179}, year = {1998}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A remark on the index of symmetric operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25169}, year = {1998}, abstract = {We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of higher order operators on singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25127}, year = {1998}, abstract = {The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.}, language = {en} } @unpublished{SchulzeTarkhanov1998, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A Lefschetz fixed point formula in the relative elliptic theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25159}, year = {1998}, abstract = {A version of the classical Lefschetz fixed point formula is proved for the cohomology of the cone of a cochain mapping of elliptic complexes. As a particular case we show a Lefschetz formula for the relative de Rham cohomology.}, language = {en} } @unpublished{SchulzeNazaikinskiiSterninetal.1997, author = {Schulze, Bert-Wolfgang and Nazaikinskii, Vladimir and Sternin, Boris and Shatalov, Victor}, title = {Spectral boundary value problems and elliptic equations on singular manifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25147}, year = {1997}, abstract = {For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {On general boundary value problems for elliptic equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25138}, year = {1997}, abstract = {We construct a theory of general boundary value problems for differential operators whose symbols do not necessarily satisfy the Atiyah-Bott condition [3] of vanishing of the corresponding obstruction. A condition for these problems to be Fredholm is introduced and the corresponding finiteness theorems are proved.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On the index formula for singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25116}, year = {1997}, abstract = {In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of elliptic operators on manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25096}, year = {1997}, abstract = {For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.}, language = {en} } @unpublished{NazaikinskiiSchulzeSterninetal.1997, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {Quantization of symplectic transformations on manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25084}, year = {1997}, abstract = {The structure of symplectic (canonical) transformations on manifolds with conical singularities is established. The operators associated with these transformations are defined in the weight spaces and their properties investigated.}, language = {en} } @unpublished{NazaikinskiiSchulzeSterninetal.1997, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {A Lefschetz fixed point theorem for manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25073}, year = {1997}, abstract = {We establish an Atiyah-Bott-Lefschetz formula for elliptic operators on manifolds with conical singular points.}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {Operator algebras on singular manifolds. IV, V}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25062}, year = {1997}, language = {en} } @unpublished{SchulzeTarkhanov1997, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The Riemann-Roch theorem for manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25051}, year = {1997}, abstract = {The classical Riemann-Roch theorem is extended to solutions of elliptic equations on manifolds with conical points.}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {Operator algebras on singular manifolds. I}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25011}, year = {1997}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {Nonstationary problems for equations of Borel-Fuchs type}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24973}, year = {1997}, abstract = {In the paper, the nonstationary problems for equations of Borel-Fuchs type are investigated. The asymptotic expansion are obtained for different orders of degeneration of operators in question. The approach to nonstationary problems based on the asymptotic theory on abstract algebras is worked out.}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {On the index of differential operators on manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24965}, year = {1997}, abstract = {The paper contains the proof of the index formula for manifolds with conical points. For operators subject to an additional condition of spectral symmetry, the index is expressed as the sum of multiplicities of spectral points of the conormal symbol (indicial family) and the integral from the Atiyah-Singer form over the smooth part of the manifold. The obtained formula is illustrated by the example of the Euler operator on a two-dimensional manifold with conical singular point.}, language = {en} } @unpublished{RabinovichSchulzeTarkhanov1997, author = {Rabinovich, Vladimir and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A calculus of boundary value problems in domains with Non-Lipschitz Singular Points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24957}, year = {1997}, abstract = {The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.}, language = {en} } @unpublished{SchulzeTarkhanov1997, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Lefschetz theory on manifolds with edges : introduction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24948}, year = {1997}, abstract = {The aim of this book is to develop the Lefschetz fixed point theory for elliptic complexes of pseudodifferential operators on manifolds with edges. The general Lefschetz theory contains the index theory as a special case, while the case to be studied is much more easier than the index problem. The main topics are: - The calculus of pseudodifferential operators on manifolds with edges, especially symbol structures (inner as well as edge symbols). - The concept of ellipticity, parametrix constructions, elliptic regularity in Sobolev spaces. - Hodge theory for elliptic complexes of pseudodifferential operators on manifolds with edges. - Development of the algebraic constructions for these complexes, such as homotopy, tensor products, duality. - A generalization of the fixed point formula of Atiyah and Bott for the case of simple fixed points. - Development of the fixed point formula also in the case of non-simple fixed points, provided that the complex consists of diferential operarators only. - Investigation of geometric complexes (such as, for instance, the de Rham complex and the Dolbeault complex). Results in this direction are desirable because of both purely mathe matical reasons and applications in natural sciences.}, language = {en} }