@phdthesis{Stahlhut2016, author = {Stahlhut, Frank}, title = {Entwicklung neuer triphiler, fluorkohlenstofffreier Blockcopolymere und Untersuchung ihrer Eigenschaften f{\"u}r Multikompartiment-Mizellen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96299}, school = {Universit{\"a}t Potsdam}, pages = {iv, 191}, year = {2016}, abstract = {Neue Systeme f{\"u}r triphile, fluorkohlenstofffreie Blockcopolymere in Form von Acrylat-basierten thermoresponsiven Blockcopolymeren sowie Acrylat- bzw. Styrol-basierten Terblock-Polyelektrolyten mit unterschiedlich chaotropen Kationen des jeweiligen polyanionischen Blocks wurden entwickelt. Multikompartiment-Mizellen, mizellare Aggregate mit ultrastrukturiertem hydrophobem Mizellkern die biologischen Strukturen wie dem Humanalbumin nachempfunden sind, sollten bei der Selbstorganisation in w{\"a}ssriger Umgebung entstehen. Durch Verwendung apolarer und polarer Kohlenwasserstoff-Dom{\"a}nen anstelle von fluorophilen Fluorkohlenstoff-Dom{\"a}nen sollte erstmals anhand solcher triphilen Systeme nachgewiesen werden, ob diese in der Lage zur selektiven Aufnahme hydrophober Substanzen in unterschiedliche Dom{\"a}nen des Mizellkerns sind. Mit Hilfe von sequentieller RAFT-Polymerisation wurden diese neuen triphilen Systeme hergestellt, die {\"u}ber einen permanent hydrophilen, eine permanent stark hydrophoben und einen dritten Block verf{\"u}gen, der durch externe Einfl{\"u}sse, speziell die Induzierung eines thermischen Coil-to-globule-{\"U}bergangs bzw. die Zugabe von organischen, hydrophoben Gegenionen von einem wasserl{\"o}slichen in einen polar-hydrophoben Block umgewandelt werden kann. Als RAFT-Agens wurde 4-(Trimethylsilyl)benzyl(3-(trimethylsilyl)-propyl)-trithiocarbonat mit zwei unterschiedlichen TMS-Endgruppen verwendet, das kontrollierte Reaktions-bedingungen sowie die molekulare Charakterisierung der komplexen Copolymere erm{\"o}glichte. Die beiden Grundtypen der linearen tern{\"a}ren Blockcopolymere wurden jeweils in zwei 2 Modell-Systeme, die geringf{\"u}gig in ihren chemischen Eigenschaften sowie in dem Blockl{\"a}ngenverh{\"a}ltnis von hydrophilen und hydrophoben Polymersegmenten variierten, realisiert und unterschiedliche Permutation der Bl{\"o}cke aufwiesen. Als ersten Polymertyp wurden amphiphile thermoresponsive Blockcopolymere verwendet. Modell-System 1 bestand aus dem permanent hydrophoben Block Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat), permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat) und den thermoresponsiven Block Poly(N,N'-Diethylacrylamid), dessen Homopolymer eine LCST-Phasen{\"u}bergang (LCST, engl.: lower critical solution temperature) bei ca. 36°C aufweist. Das Modell-System 2 bestand aus dem permanent hydrophilen Block Poly(2-(Methylsulfinyl)ethylacrylat), dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) und wiederum Poly(N,N'-Diethylacrylamid). Im tern{\"a}ren Blockcopolymer erh{\"o}hte sich, je nach Blocksequenz und relativen Blockl{\"a}ngen, der LCST-{\"U}bergang auf 50 - 65°C. Bei der Untersuchung der Selbstorganisation f{\"u}r die Polymer-Systeme dieses Typs wurde die Temperatur variiert, um verschieden mizellare {\"U}berstrukturen in w{\"a}ssriger Umgebung zu erzeugen bzw. oberhalb des LCST-{\"U}bergangs Multikompartiment-Mizellen nachzuweisen. Die Unterschiede in der Hydrophilie bzw. den sterischen Anspr{\"u}che der gew{\"a}hlten hydrophilen Bl{\"o}cke sowie die Variation der jeweiligen Blocksequenzen erm{\"o}glichte dar{\"u}ber hinaus die Bildung verschiedenster Morphologien mizellarer Aggregate. Der zweite Typ basierte auf ein Terblock-Polyelektrolyt-System mit Polyacrylaten bzw. Polystyrolen als Polymerr{\"u}ckgrat. Polymere ionische Fl{\"u}ssigkeiten wurden als Vorlage der Entwicklung zweier Modell-Systeme genommen. Eines der beiden Systeme bestand aus dem permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat, dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) sowie dem Polyanion-Block Poly(3-Sulfopropylacrylat). Die Hydrophobie des Polyanion-Blocks variierte durch Verwendung großer organischer Gegenionen, n{\"a}mlich Tetrabutylammonium, Tetraphenylphosphonium und Tetraphenylstibonium. Analog wurde in einem weiteren System aus dem permanent hydrophilen Block Poly(4-Vinylbenzyltetrakis(ethylenoxy)methylether), dem permanent hydrophoben Block Poly(para-Methylstyrol) und Poly(4-Styrolsulfonat) mit den entsprechenden Gegenionen gebildet. Aufgrund unterschiedlicher Kettensteifigkeit in beiden Modell-Systemen sollte es bei der Selbstorganisation der mizellarer Aggregate zu unterschiedlichen {\"U}berstrukturen kommen. Mittels DSC-Messungen konnte nachgewiesen werden, dass f{\"u}r alle Modell-Systeme die Bl{\"o}cke in Volumen-Phase miteinander inkompatibel waren, was eine Voraussetzung f{\"u}r Multikompartimentierung von mizellaren Aggregaten ist. Die Gr{\"o}ße mizellarer Aggregate sowie der Einfluss externer Einfl{\"u}sse wie der Ver{\"a}nderung der Temperatur bzw. der Hydrophobie und Gr{\"o}ße von Gegenionen auf den hydrodynamischen Durchmesser mittels DLS-Untersuchungen wurden f{\"u}r alle Modell-Systeme untersucht. Die Ergebnisse zu den thermoresponsiven tern{\"a}ren Blockcopolymeren belegten , dass sich oberhalb der Phasen{\"u}bergangstemperatur des thermoresponsiven Blocks die Struktur der mizellaren Aggregate {\"a}nderte, indem der p(DEAm)-Block scheinbar kollabierte und so zusammen mit den permanent hydrophoben Block den jeweiligen Mizellkern bildete. Nach gewisser Equilibrierungszeit konnten bei Raumtemperatur dir urspr{\"u}nglichen mizellaren Strukturen regeneriert werden. Hingegen konnte f{\"u}r die Terblock-Polyelektrolyt-Systeme bei Verwendung der unterschiedlich hydrophoben Gegenionen kein signifikanter Unterschied in der Gr{\"o}ße der mizellaren Aggregate beobachtet werden. Zur Abbildung der mizellaren Aggregate mittels kryogene Transmissionselektronenmikroskopie (cryo-TEM) der mizellaren Aggregate war mit Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat) ein Modell-System so konzipiert, dass ein erh{\"o}hter Elektronendichtekontrast durch Schwefel-Atome die Visualisierung ultrastrukturierter hydrophober Mizellkerne erm{\"o}glichte. Dieser Effekt sollte in den Terblock-Polyelektrolyt-Systemen auch durch die Gegenionen Tetraphenylphosphonium und Tetraphenylstibonium nachgestellt werden. W{\"a}hrend bei den thermoresponsiven Systemen auch oberhalb des Phasen{\"u}bergangs kein Hinweis auf Ultrastrukturierung beobachtet wurde, waren f{\"u}r die Polyelektrolyt-Systeme, insbesondere im Fall von Tetraphenylstibonium als Gegenion {\"U}berstrukturen zu erkennen. Der Nachweis der Bildung von Multikompartiment-Mizellen war f{\"u}r beide Polymertypen mit dieser abbildenden Methode nicht m{\"o}glich. Die Unterschiede in der Elektronendichte einzelner Bl{\"o}cke m{\"u}sste m{\"o}glicherweise weiter erh{\"o}ht werden um Aussagen diesbez{\"u}glich zu treffen. Die Untersuchung von ortsspezifischen Solubilisierungsexperimenten mit solvatochromen Fluoreszenzfarbstoffen mittels „steady-state"-Fluoreszenzspektroskopie durch Vergleich der Solubilisierungsorte der Terblockcopolymere bzw. -Polyelektrolyte mit den jeweiligen Solubilisierungsorten von Homopolymer- und Diblock-Vorstufen sollten den qualitativen Nachweis der Multikompartimentierung erbringen. Aufgrund der geringen Mengen an Farbstoff, die f{\"u}r die Solubilisierungsexperimente eingesetzt wurden zeigten DLS-Untersuchungen keine st{\"o}renden Effekte der Sonden auf die Gr{\"o}ße der mizellaren Aggregate. Jedoch erschwerten Quench-Effekte im Falle der Polyelektrolyt Modell-Systeme eine klare Interpretation der Daten. Im Falle der Modell-Systeme der thermoresponsiven Blockcopolymere waren dagegen deutliche solvatochrome Effekte zwischen der Solubilisierung in den mizellaren Aggregaten unterhalb und oberhalb des Phasen{\"u}bergangs zu erkennen. Dies k{\"o}nnte ein Hinweis auf Multikompartimentierung oberhalb des LCST-{\"U}bergangs sein. Ohne die Informationen einer Strukturanalyse wie z.B. der R{\"o}ntgen- oder Neutronenkleinwinkelstreuung (SAXS oder SANS), kann nicht abschließend gekl{\"a}rt werden, ob die Solubilisierung in mizellaren hydrophoben Dom{\"a}nen des kollabierten Poly(N,N'-Diethylacrylamid) erfolgt oder in einer Mischform von mizellaren Aggregaten mit gemittelter Polarit{\"a}t.}, language = {de} }