@article{HeinzeGenschWeberetal.2016, author = {Heinze, Johannes and Gensch, Sabine and Weber, Ewald and Joshi, Jasmin Radha}, title = {Soil temperature modifies effects of soil biota on plant growth}, series = {Journal of plant ecology}, volume = {10}, journal = {Journal of plant ecology}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1752-9921}, doi = {10.1093/jpe/rtw097}, pages = {808 -- 821}, year = {2016}, abstract = {Aims Plants directly and indirectly interact with many abiotic and biotic soil components. Research so far mostly focused on direct, individual abiotic or biotic effects on plant growth, but only few studies tested the indirect effects of abiotic soil factors on plant growth. Therefore, we investigated how abiotic soil conditions affect plant performance, via changes induced by soil biota. Methods In a full-factorial experiment, we grew the widespread grass Dactylis glomerata either with or without soil biota and investigated the impact of soil temperature, fertility and moisture on the soil biota effects on plant growth. We measured biomass production, root traits and colonization by arbuscular mycorrhizal fungi as well as microbial respiration. Important Findings We found significant interaction effects between abiotic soil conditions and soil biota on plant growth for fertility, but especially for soil temperature, as an increase of 10 degrees C significantly changed the soil biota effects on plant growth from positive to neutral. However, if tested individually, an increase in soil temperature and fertility per se positively affected plant biomass production, whereas soil biota per se did not affect overall plant growth, but both influenced root architecture. By affecting soil microbial activity and root architecture, soil temperature might influence both mutualistic and pathogenic interactions between plants and soil biota. Such soil temperature effects should be considered in soil feedback studies to ensure greater transferability of results from artificial and experimental conditions to natural environmental conditions.}, language = {en} } @article{DellingerEsslHojsgaardetal.2016, author = {Dellinger, Agnes S. and Essl, Franz and Hojsgaard, Diego and Kirchheimer, Bernhard and Klatt, Simone and Dawson, Wayne and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Hoerandl, Elvira and Dullinger, Stefan}, title = {Niche dynamics of alien species do not differ among sexual and apomictic flowering plants}, series = {New phytologist : international journal of plant science}, volume = {209}, journal = {New phytologist : international journal of plant science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.13694}, pages = {1313 -- 1323}, year = {2016}, abstract = {We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche.}, language = {en} }