@article{VishnevetskayaHildebrandNiebuuretal.2016, author = {Vishnevetskaya, Natalya S. and Hildebrand, Viet and Niebuur, Bart-Jan and Grillo, Isabelle and Filippov, Sergey K. and Laschewsky, Andre and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Aggregation Behavior of Doubly Thermoresponsive Polysulfobetaine-b-poly(N-isopropylacrylamide) Diblock Copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.6b01186}, pages = {6655 -- 6668}, year = {2016}, abstract = {A 2-fold thermoresponsive diblock copolymer PSPP430-b-PNIPAM(200) consisting of a zwitterionic polysulfobetaine (PSPP) block and a nonionic poly(N-isopropylacrylamide) (PNIPAM) block is prepared by successive RAFT polymerizations. In aqueous solution, the corresponding homopolymers PSPP and PNIPAM feature both upper and lower critical solution temperature (UCST and LCST) behavior, respectively. The diblock copolymer exhibits thermally induced "schizophrenic" aggregation behavior in aqueous solutions. Moreover, the ion sensitivity of the, cloud point of the zwitterionic PSPP block to both the ionic strength and the nature of the salt offers the possibility to create switchable systems which respond sensitively to changes of the temperature and of the electrolyte type and concentration. The diblock copolymer solutions in D2O are investigated by means of turbidimetry and small-angle neutron scattering (SANS) with respect to the phase behavior and the self-assembled structures in dependence on temperature and electrolyte content. Marked, differences of the aggregation below the UCST-type and above the LCST-type transition are observed. The addition of a small amount of NaBr (0.004 M) does not affect the overall behavior, and only the UCST-type transition and aggregate structures are slightly altered, reflecting the well-known ion sensitivity of the zwitterionic PSPP block.}, language = {en} } @article{ZhongMetwalliRawolleetal.2016, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andre and Papadakis, Christine M. and Cubitt, Robert and Wang, Jiping and Mueller-Buschbaum, Peter}, title = {Influence of Hydrophobic Polystyrene Blocks on the Rehydration of Polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene Films Investigated by in Situ Neutron Reflectivity}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b02279}, pages = {317 -- 326}, year = {2016}, abstract = {The rehydration of thermoresponsive polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene (PS-b-PMDEGA-b-PS) films forming a lamellar microphase-separated structure is investigated by in situ neutron reflectivity in a D2O vapor atmosphere. The rehydration of collapsed PS-b-PMDEGA-b-PS films is realized by a temperature change from 45 to 23 degrees C and comprises (1) condensation and absorption of D2O, (2) evaporation of D2O, and (3) reswelling of the film due to internal rearrangement. The hydrophobic PS layers hinder the absorption of condensed D2O, and a redistribution of embedded D2O between the hydrophobic PS layers and the hydrophilic PMDEGA layers is observed. In contrast, the rehydration of semiswollen PS-b-PMDEGA-b-PS films (temperature change from 35 to 23 degrees C) shows two prominent differences: A thicker D2O layer condenses on the surface, causing a more enhanced evaporation of D2O. The rehydrated films differ in film thickness and volume fraction of D2O, which is due to the different thermal protocols, although the final temperature is identical.}, language = {en} } @article{EnzenbergLaschewskyBoeffeletal.2016, author = {Enzenberg, Anne and Laschewsky, Andre and Boeffel, Christine and Wischerhoff, Erik}, title = {Influence of the Near Molecular Vicinity on the Temperature Regulated Fluorescence Response of Poly(N-vinylcaprolactam)}, series = {Polymers}, volume = {8}, journal = {Polymers}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym8040109}, pages = {21}, year = {2016}, abstract = {A series of new fluorescent dye bearing monomers, including glycomonomers, based on maleamide and maleic esteramide was synthesized. The dye monomers were incorporated by radical copolymerization into thermo-responsive poly(N\&\#8209;vinyl-caprolactam) that displays a lower critical solution temperature (LCST) in aqueous solution. The effects of the local molecular environment on the polymers' luminescence, in particular on the fluorescence intensity and the extent of solvatochromism, were investigated below as well as above the phase transition. By attaching substituents of varying size and polarity in the close vicinity of the fluorophore, and by varying the spacer groups connecting the dyes to the polymer backbone, we explored the underlying structure-property relationships, in order to establish rules for successful sensor designs, e.g., for molecular thermometers. Most importantly, spacer groups of sufficient length separating the fluorophore from the polymer backbone proved to be crucial for obtaining pronounced temperature regulated fluorescence responses. View Full-Text}, language = {en} } @article{HildebrandLaschewskyWischerhoff2016, author = {Hildebrand, Viet and Laschewsky, Andre and Wischerhoff, Erik}, title = {Modulating the solubility of zwitterionic poly((3methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties}, series = {Polymer Chemistry}, volume = {7}, journal = {Polymer Chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py01642h}, pages = {731 -- 740}, year = {2016}, abstract = {Complementary to the well-established zwitterionic monomer 3-((3-methacrylamidopropyl) dimethylammonio) propane-1-sulfonate (SPP), the closely related monomers 2-hydroxy-3-((3-methacrylamidopropyl) dimethylammonio) propane-1-sulfonate (SHPP) and 4-((3-methacrylamidopropyl) dimethylammonio)butane- 1-sulfonate (SBP) were synthesised and polymerised by reversible addition-fragmentation chain transfer (RAFT) polymerisation, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar masses were characterised with respect to their solubility in water and aqueous salt solutions. Both poly(sulfobetaine)s show thermoresponsive behaviour in water, exhibiting phase separation at low temperatures and upper critical solution temperatures (UCST). For both polySHPP and polySBP, cloud points depend notably on the molar mass, and are much higher in D2O than in H2O. Also, the cloud points are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed nature of the spacer group separating the anionic and the cationic charges of the betaine moiety, on the other hand. As anticipated, the cloud points of polySBP are much higher than the ones of the analogous polySPP of identical molar mass. Surprisingly, the cloud points of polySHPP are also somewhat higher than the ones of their polySPP analogues, despite the additional hydrophilic hydroxyl group present in the spacer separating the ammonium and the sulfonate moieties. These findings point to a complicated interplay of the various hydrophilic components in polyzwitterions with respect to their overall hydrophilicity. Thus, the spacer group in the betaine moiety proves to be an effective additional molecular design parameter, apparently small variations of which strongly influence the phase behaviour of the polyzwitterions in specific aqueous environments.}, language = {en} } @article{KyriakosPhilippLinetal.2016, author = {Kyriakos, Konstantinos and Philipp, Martine and Lin, Che-Hung and Dyakonova, Margarita and Vishnevetskaya, Natalya and Grillo, Isabelle and Zaccone, Alessio and Miasnikova, Anna and Laschewsky, Andre and Mueller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency}, series = {Macromolecular rapid communications}, volume = {37}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201500583}, pages = {420 -- 425}, year = {2016}, abstract = {The aggregation kinetics of thermoresponsive core-shell micelles with a poly(N-isopropyl acrylamide) shell in pure water or in mixtures of water with the cosolvents methanol or ethanol at mole fractions of 5\% is investigated during a temperature jump across the respective cloud point. Characteristically, these mixtures give rise to cononsolvency behavior. At the cloud point, aggregates are formed, and their growth is followed with time-resolved small-angle neutron scattering. Using the reversible association model, the interaction potential between the aggregates is determined from their growth rate in dependence on the cosolvents. The effect of the cosolvent is attributed to the interaction potential on the structured layer of hydration water around the aggregates. It is surmised that the latter is perturbed by the cosolvent and thus the residual repulsive hydration force between the aggregates is reduced. The larger the molar volume of the cosolvent, the more pronounced is the effect. This framework provides a molecular-level understanding of solvent-mediated effective interactions in polymer solutions and new opportunities for the rational control of self-assembly in complex soft matter systems.}, language = {en} } @article{KopecRozpedzikLapoketal.2016, author = {Kopec, Maciej and Rozpedzik, Anna and Lapok, Lukasz and Geue, Thomas and Laschewsky, Andre and Zapotoczny, Szczepan}, title = {Stratified Micellar Multilayers-Toward Nanostructured Photoreactors}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {28}, journal = {Chemistry of materials : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.6b00161}, pages = {2219 -- 2228}, year = {2016}, abstract = {Polyelectrolyte multilayers (PEMs) with stratification of the internal structure were assembled from statistical amphiphilic copolyelectrolytes of opposite charges. These polyelectrolytes organize in aqueous solutions into micellar structures with fluoroalkyl and aromatic nanodomains, respectively, that were also preserved after deposition as thin films via layer-by-layer (LbL) electrostatic self-assembly. The unimolecular micelles, formed due to statistical compositions of amphiphilic polyelectrolytes used, were shown to suppress chain interdiffusion between adjacent layers in resulting micellar PEMs, as evidenced by spectroscopic ellipsometry, atomic force microscopy (AFM), and neutron reflectometry (NR) measurements. Additionally, hydrophobic cores of the micelles were used as hosts for photoactive molecules, namely, ferrocene and perfluorinated magnesium phthalocyanine. Stratified micellar multilayers were then deposited as hollow capsules using CaCO3 microparticles as templates. Photoinduced electron transfer (PET) between ferrocene and phthalocyanine solubilized in the polymer micelles was demonstrated to occur efficiently inside the stratified, polyelectrolyte walls of the capsules, due to the polarity gradient created by the incompatible aromatic and fluoroalkyl domains. The obtained results present a new approach to construct well-organized, self-assembled nanostructured materials for solar energy conversion.}, language = {en} } @article{HerfurthLaschewskyNoirezetal.2016, author = {Herfurth, Christoph and Laschewsky, Andre and Noirez, Laurence and von Lospichl, Benjamin and Gradzielski, Michael}, title = {Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {107}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2016.09.089}, pages = {422 -- 433}, year = {2016}, abstract = {A series of hydrophobically end-capped linear triblock copolymers as well as of three-arm and four-arm star block copolymers was synthesized in a one-pot procedure from N,N-dimethylacrylamide (DMA) and N, N-diethylacrylamide (DEA). The sequential reversible addition-fragmentation chain transfer (RAFT) polymerization of these monomers via the R-approach using bi-, tri- and tetrafunctional chain transfer agents (CrAs) bearing hydrophobic dodecyl moieties proceeded in a well-controlled manner up to almost quantitative conversion. Polymers with molar masses up to 150 kDa, narrow molar mass distribution (PDI <= 1.3) and high end group functionality were obtained, which are thermoresponsive in aqueous solution showing a LCST (lower critical solution temperature) transition. The temperature-dependent associative behavior of the polymers was examined using turbidimetry, static and dynamic light scattering (SLS, DLS), and small angle neutron scattering (SANS) for structural analysis. At 25 degrees C, the polymers form weak transient networks, and rather small hydrophobic domains are already present for polymer concentrations of 5 wt\%. However, when heating above the LCST transition (35-40 degrees C) of the PDEA blocks, the enhanced formation of hydrophobic domains is observed by means of light and neutron scattering. These domains have a size of about 12-15 nm and must be effectively physically cross-linked as they induce high viscosity for the more concentrated samples. SANS shows that these domains are ordered as evidenced by the appearance of a correlation peak. The copolymer architecture affects in particular the extent of ordering as the four-arm star block copolymer shows much more repulsive interactions compared to the analogous copolymers with a lower number of arms. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PinyouRuffPoelleretal.2016, author = {Pinyou, Piyanut and Ruff, Adrian and Poeller, Sascha and Barwe, Stefan and Nebel, Michaela and Alburquerque, Natalia Guerrero and Wischerhoff, Erik and Laschewsky, Andre and Schmaderer, Sebastian and Szeponik, Jan and Plumere, Nicolas and Schuhmann, Wolfgang}, title = {Thermoresponsive amperometric glucose biosensor}, series = {Biointerphases}, volume = {11}, journal = {Biointerphases}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1934-8630}, doi = {10.1116/1.4938382}, pages = {7}, year = {2016}, abstract = {The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(omega-ethoxytriethylenglycol methacrylate-omega-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-omega-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 degrees C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol) methacrylate-co-butyl acrylate-co-2-(dimethylamino) ethyl methacrylate)-[Os(bpy)(2)(4-(((2-(2-(2-aminoethoxy) ethoxy) ethyl) amino) methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on-to an off-state without heating of the surrounding analyte solution. (C) 2015 American Vacuum Society.}, language = {en} } @article{CouturierWischerhoffBerninetal.2016, author = {Couturier, Jean-Philippe and Wischerhoff, Erik and Bernin, Robert and Hettrich, Cornelia and Koetz, Joachim and Sutterlin, Martin and Tiersch, Brigitte and Laschewsky, Andre}, title = {Thermoresponsive Polymers and Inverse Opal Hydrogels for the Detection of Diols}, series = {Langmuir}, volume = {32}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.6b00803}, pages = {4333 -- 4345}, year = {2016}, abstract = {Responsive inverse opal hydrogels functionalized by boroxole moieties were synthesized and explored as sensor platforms for various low molar mass as well as polymeric diols and polyols, including saccharides, glycopolymers and catechols, by exploiting the diol induced modulation of their structural color. The underlying thermoresponsive water-soluble copolymers and hydrogels exhibit a coil-to-globule or volume phase transition, respectively, of the LCST-type. They were prepared from oligoethylene oxide methacrylate (macro)monomers and functionalized via copolymerization to bear benzoboroxole moieties. The resulting copolymers represent weak polyacids, which can bind specifically to diols within an appropriate pH window. Due to the resulting modulation of the overall hydrophilicity of the systems and the consequent shift of their phase transition temperature, the usefulness of such systems for indicating the presence of catechols, saccharides, and glycopolymers was studied, exploiting the diol/polyol induced shifts of the soluble polymers' cloud point, or the induced changes of the hydrogels' swelling. In particular, the increased acidity of benzoboroxoles compared to standard phenylboronic acids allowed performing the studies in PBS buffer (phosphate buffered saline) at the physiologically relevant pH of 7.4. The inverse opals constructed of these thermo- and analyte-responsive hydrogels enabled following the binding of specific diols by the induced shift of the optical stop band. Their highly porous structure enabled the facile and specific optical detection of not only low molar mass but also of high molar mass diol/polyol analytes such as glycopolymers. Accordingly, such thermoresponsive inverse opal systems functionalized with recognition units represent attractive and promising platforms for the facile sensing of even rather big analytes by simple optical means, or even by the bare eye.}, language = {en} }