@misc{EhlertHolzweberLippitzetal.2016, author = {Ehlert, Christopher and Holzweber, Markus and Lippitz, Andreas and Unger, Wolfgang E. S. and Saalfrank, Peter}, title = {A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394417}, pages = {8654 -- 8661}, year = {2016}, abstract = {In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.}, language = {en} } @misc{FrielerMengelLevermann2016, author = {Frieler, Katja and Mengel, Matthias and Levermann, Anders}, title = {Delaying future sea-level rise by storing water in Antarctica}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {533}, issn = {1866-8372}, doi = {10.25932/publishup-41023}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410234}, pages = {8}, year = {2016}, abstract = {Even if greenhouse gas emissions were stopped today, sea level would continue to rise for centuries, with the long-term sea-level commitment of a 2 degrees C warmer world significantly exceeding 2 m. In view of the potential implications for coastal populations and ecosystems worldwide, we investigate, from an ice-dynamic perspective, the possibility of delaying sea-level rise by pumping ocean water onto the surface of the Antarctic ice sheet. We find that due to wave propagation ice is discharged much faster back into the ocean than would be expected from a pure advection with surface velocities. The delay time depends strongly on the distance from the coastline at which the additional mass is placed and less strongly on the rate of sea-level rise that is mitigated. A millennium-scale storage of at least 80\% of the additional ice requires placing it at a distance of at least 700 km from the coastline. The pumping energy required to elevate the potential energy of ocean water to mitigate the currently observed 3 mmyr(-1) will exceed 7\% of the current global primary energy supply. At the same time, the approach offers a comprehensive protection for entire coastlines particularly including regions that cannot be protected by dikes.}, language = {en} }