@misc{KraheTomaszewskaKuyperetal.2014, author = {Krah{\´e}, Barbara and Tomaszewska, Paulina and Kuyper, Lisette and Vanwesenbeeck, Ine}, title = {Prevalence of sexual aggression among young people in Europe: a review of the evidence from 27 EU countries}, series = {Aggression and violent behavior : a review journa}, volume = {19}, journal = {Aggression and violent behavior : a review journa}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {1359-1789}, doi = {10.1016/j.avb.2014.07.005}, pages = {545 -- 558}, year = {2014}, abstract = {Sexual aggression poses a serious threat to the sexual well-being of young people. This paper documents the available evidence on the prevalence of sexual aggression perpetration and victimization from 27 EU countries, established as part of the Youth Sexual Aggression and Victimization (Y-SAV) project. A total of N = 113 studies were identified through a systematic review of the literature and consultations with experts in each country. Despite differences in the number of available studies, methodology, and sample composition, the review shows substantial prevalence rates of sexual aggression perpetration and victimization across Europe. A wide variation was found, both within and between countries. The lifetime prevalence rates of female sexual victimization, excluding childhood sexual abuse, ranged from 9 to 83\%, the rates of male sexual victimization ranged from 2 to 66\%, the rates of male sexual aggression ranged from 0 to 80\%, and the range of female sexual aggression ranged from 0.8 to 40\%. One-year prevalence rates showed a similar variability. Conceptual and methodological problems in the database are discussed, and an outline is presented for a more harmonized approach to studying the scale of sexual aggression among young people in Europe. (c) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{DolkHommelColzatoetal.2014, author = {Dolk, Thomas and Hommel, Bernhard and Colzato, Lorenza S. and Schuetz-Bosbach, Simone and Prinz, Wolfgang and Liepelt, Roman}, title = {The joint Simon effect a review and theoretical integration}, series = {Frontiers in psychology}, volume = {5}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.00974}, pages = {10}, year = {2014}, language = {en} } @misc{MaslinBrierleyMilneretal.2014, author = {Maslin, Mark A. and Brierley, Chris M. and Milner, Alice M. and Shultz, Susanne and Trauth, Martin H. and Wilson, Katy E.}, title = {East African climate pulses and early human evolution}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {101}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.06.012}, pages = {1 -- 17}, year = {2014}, abstract = {Current evidence suggests that all of the major events in hominin evolution have occurred in East Africa. Over the last two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of East Africa has varied in the past. The landscape of East Africa has altered dramatically over the last 10 million years. It has changed from a relatively flat, homogenous region covered with mixed tropical forest, to a varied and heterogeneous environment, with mountains over 4 km high and vegetation ranging from desert to cloud forest. The progressive rifting of East Africa has also generated numerous lake basins, which are highly sensitive to changes in the local precipitation-evaporation regime. There is now evidence that the presence of precession-driven, ephemeral deep-water lakes in East Africa were concurrent with major events in hominin evolution. It seems the unusual geology and climate of East Africa created periods of highly variable local climate, which, it has been suggested could have driven hominin speciation, encephalisation and dispersal out of Africa. One example is the significant hominin speciation and brain expansion event at -1.8 Ma that seems to have been coeval with the occurrence of highly variable, extensive, deep-water lakes. This complex, climatically very variable setting inspired first the variability selection hypothesis, which was then the basis for the pulsed climate variability hypothesis. The newer of the two suggests that the long-term drying trend in East Africa was punctuated by episodes of short, alternating periods of extreme humidity and aridity. Both hypotheses, together with other key theories of climate-evolution linkages, are discussed in this paper. Though useful the actual evolution mechanisms, which led to early hominins are still unclear and continue to be debated. However, it is clear that an understanding of East African lakes and their palaeoclimate history is required to understand the context within which humans evolved and eventually left East Africa. (C) 2014 The Authors. Published by Elsevier Ltd.}, language = {en} } @misc{GechevHilleWoerdenbagetal.2014, author = {Gechev, Tsanko S. and Hille, Jacques and Woerdenbag, Herman J. and Benina, Maria and Mehterov, Nikolay and Toneva, Valentina and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd}, title = {Natural products from resurrection plants: Potential for medical applications}, series = {Biotechnology advances : an international review journal ; research reviews and patent abstracts}, volume = {32}, journal = {Biotechnology advances : an international review journal ; research reviews and patent abstracts}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0734-9750}, doi = {10.1016/j.biotechadv.2014.03.005}, pages = {1091 -- 1101}, year = {2014}, abstract = {Resurrection species are a group of land plants that can tolerate extreme desiccation of their vegetative tissues during harsh drought stress, and still quickly often within hours regain normal physiological and metabolic functions following rehydration. At the molecular level, this desiccation tolerance is attributed to basal cellular mechanisms including the constitutive expression of stress-associated genes and high levels of protective metabolites present already in the absence of stress, as well as to transcriptome and metabolome reconfigurations rapidly occurring during the initial phases of drought stress. Parts of this response are conferred by unique metabolites, including a diverse array of sugars, phenolic compounds, and polyols, some of which accumulate to high concentrations within the plant cell. In addition to drought stress, these metabolites are proposed to contribute to the protection against other abiotic stresses and to an increased oxidative stress tolerance. Recently, extracts of resurrection species and particular secondary metabolites therein were reported to display biological activities of importance to medicine, with e.g. antibacterial, anticancer, antifungal, and antiviral activities, rendering them possible candidates for the development of novel drug substances as well as for cosmetics. Herein, we provide an overview of the metabolite composition of resurrection species, summarize the latest reports related to the use of natural products from resurrection plants, and outline their potential for medical applications. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).}, language = {en} } @misc{KonradSchmolkeHalama2014, author = {Konrad-Schmolke, Matthias and Halama, Ralf}, title = {Combined thermodynamic-geochemical modeling in metamorphic geology: Boron as tracer of fluid-rock interaction}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {208}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2014.09.021}, pages = {393 -- 414}, year = {2014}, abstract = {Quantitative geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams has greatly advanced our ability to model geodynamic processes. Combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In metamorphic petrology the combination of thermodynamic and trace element forward modeling can be used to study and to quantify processes at spatial scales from mu m to km. The thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on two examples relevant to mass transfer during metamorphism. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab, the associated transport of B as well as variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the modeled results of both examples to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable if only one model approach was chosen. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{KoerzdoerferBredas2014, author = {K{\"o}rzd{\"o}rfer, Thomas and Bredas, Jean-Luc}, title = {Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals}, series = {Accounts of chemical research}, volume = {47}, journal = {Accounts of chemical research}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0001-4842}, doi = {10.1021/ar500021t}, pages = {3284 -- 3291}, year = {2014}, abstract = {CONSPECTUS: Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers. In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter. We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of pi-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the reliable prediction of the optical absorption spectrum of low-band-gap polymers. We also explain why the use of standard, out-of-the-box range-separation parameters is not recommended for the DFT and/or TD-DFT description of the ground and excited states of extended, pi-conjugated systems. Finally, we highlight a severe drawback of tuned range-separated hybrid functionals by discussing the example of the calculation of bond-length alternation in polyacetylene, which leads us to point out the challenges for future developments in this field.}, language = {en} } @misc{ZouharSauer2014, author = {Zouhar, Jan and Sauer, Michael}, title = {Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion}, series = {The plant cell}, volume = {26}, journal = {The plant cell}, number = {11}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.114.131680}, pages = {4232 -- 4244}, year = {2014}, abstract = {Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport.}, language = {en} } @misc{ReichetzederTsuprykovHocher2014, author = {Reichetzeder, Christoph and Tsuprykov, Oleg and Hocher, Berthold}, title = {Endothelin receptor antagonists in clinical research - Lessons learned from preclinical and clinical kidney studies}, series = {Life sciences : molecular, cellular and functional basis of therapy}, volume = {118}, journal = {Life sciences : molecular, cellular and functional basis of therapy}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0024-3205}, doi = {10.1016/j.lfs.2014.02.025}, pages = {141 -- 148}, year = {2014}, abstract = {Endothelin receptor antagonists (ETRAs) are approved for the treatment of pulmonary hypertension and scleroderma-related digital ulcers. The efforts to approve this class of drugs for renal indications, however, failed so far. Preclinical studies were promising. Transgenic overexpression of ET-1 or ET-2 in rodents causes chronic renal failure. Blocking the ET system was effective in the treatment of renal failure in rodent models. However, various animal studies indicate that blocking the renal tubular ETAR and ETBR causes water and salt retention partially mediated via the epithelial sodium transporter in tubular cells. ETRAs were successfully tested clinically in renal indications in phase 2 trials for the treatment of diabetic nephropathy. They showed efficacy in terms of reducing albumin excretion on top of guideline based background therapy (RAS blockade). However, these promising results could not be translated to successful phase Ill trials so far. The spectrum of serious adverse events was similar to other phase III trials using ETRAs. Potential underlying reasons for these failures and options to solve these issues are discussed. In addition preclinical and clinical studies suggest caution when addressing renal patient populations such as patients with hepatorenal syndrome, patients with any type of cystic kidney disease and patients at risk of contrast media induced nephropathy. The lessons learned in renal indications are also important for other potential promising indications of ETRAs like cancer and heart failure. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).}, language = {en} } @misc{UestuenBoernke2014, author = {Uestuen, Suayib and B{\"o}rnke, Frederik}, title = {Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways}, series = {Frontiers in plant science}, volume = {5}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00736}, pages = {6}, year = {2014}, abstract = {In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.}, language = {en} }