@misc{GebserKaufmannSchaub2012, author = {Gebser, Martin and Kaufmann, Benjamin and Schaub, Torsten H.}, title = {Multi-threaded ASP solving with clasp}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {586}, issn = {1866-8372}, doi = {10.25932/publishup-41397}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413977}, pages = {21}, year = {2012}, abstract = {We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We detail its component and communication architecture and illustrate how they support the principal functionalities of clasp. Also, we provide some insights into the data representation used for different constraint types handled by clasp. All this is accompanied by an extensive experimental analysis of the major features related to multi-threading in clasp.}, language = {en} } @article{GebserKaufmannSchaub2012, author = {Gebser, Martin and Kaufmann, Benjamin and Schaub, Torsten H.}, title = {Multi-threaded ASP solving with clasp}, series = {Theory and practice of logic programming}, volume = {12}, journal = {Theory and practice of logic programming}, number = {8}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068412000166}, pages = {525 -- 545}, year = {2012}, abstract = {We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We detail its component and communication architecture and illustrate how they support the principal functionalities of clasp. Also, we provide some insights into the data representation used for different constraint types handled by clasp. All this is accompanied by an extensive experimental analysis of the major features related to multi-threading in clasp.}, language = {en} } @article{GebserKaufmannSchaub2012, author = {Gebser, Martin and Kaufmann, Benjamin and Schaub, Torsten H.}, title = {Conflict-driven answer set solving: From theory to practice}, series = {Artificial intelligence}, volume = {187}, journal = {Artificial intelligence}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0004-3702}, doi = {10.1016/j.artint.2012.04.001}, pages = {52 -- 89}, year = {2012}, abstract = {We introduce an approach to computing answer sets of logic programs, based on concepts successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with a uniform constraint-based framework capturing diverse inferences encountered in ASP solving. Moreover, our approach allows us to apply advanced solving techniques from the area of SAT. As a result, we present the first full-fledged algorithmic framework for native conflict-driven ASP solving. Our approach is implemented in the ASP solver clasp that has demonstrated its competitiveness and versatility by winning first places at various solver contests.}, language = {en} }