@article{ZehmLaschewskyLiangetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Liang, Hua and Rabe, J{\"u}rgen P.}, title = {Straightforward access to amphiphilic dual bottle brushes by combining RAFT, ATRP, and NMP polymerization in one sequence}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma2015613}, pages = {9635 -- 9641}, year = {2011}, abstract = {Molecular brush diblock copolymers were synthesized by the orthogonal overlay of the RAFT (reversible addition-fragmentation chain transfer), the ATRP (atom transfer radical polymerization), and the NMP (nitroxide-mediated polymerization) techniques. This unique combination enabled the synthesis of the complex amphiphilic polymers without the need of postpolymerization modifications, using a diblock copolymer intermediate made from two selectively addressable inimers and applying a sequence of four controlled free radical polymerization steps in total. The resulting polymers are composed of a thermosensitive poly(N-isopropylacrylamide) brush as hydrophilic block and a polystyrene brush as hydrophobic block, thus translating the structure of the established amphiphilic diblock copolymers known as macro surfactants to the higher size level of "giant surfactants". The dual molecular brushes and the aggregates formed on ultra flat solid substrates were visualized by scanning force microscopy (SFM).}, language = {en} } @article{ZehmLaschewskyHeunemannetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Heunemann, Peggy and Gradzielski, Michael and Prevost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Lutz, Jean-Francois}, title = {Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c0py00200c}, pages = {137 -- 147}, year = {2011}, abstract = {The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains.}, language = {en} } @article{ZaupaNeffePierceetal.2011, author = {Zaupa, Alessandro and Neffe, Axel T. and Pierce, Benjamin F. and Lendlein, Andreas and Hofmann, Dieter}, title = {A molecular dynamic analysis of gelatin as an amorphous material Prediction of mechanical properties of gelatin systems}, series = {The international journal of artificial organs}, volume = {34}, journal = {The international journal of artificial organs}, number = {2}, publisher = {Wichtig}, address = {Milano}, issn = {0391-3988}, doi = {10.5301/IJAO.2010.6083}, pages = {139 -- 151}, year = {2011}, abstract = {Biomaterials are used in regenerative medicine for induced autoregeneration and tissue engineering. This is often challenging, however, due to difficulties in tailoring and controlling the respective material properties. Since functionalization is expected to offer better control, in this study gelatin chains were modified with physically interacting groups based on tyrosine with the aim of causing the formation of physical crosslinks. This method permits application-specific properties like swelling and better tailoring of mechanical properties. The design of the crosslink strategy was supported by molecular dynamic (MD) simulations of amorphous bulk models for gelatin and functionalized gelatins at different water contents (0.8 and 25 wt.-\%). The results permitted predictions to be formulated about the expected crosslink density and its influence on equilibrium swelling behavior and on elastic material properties. The models of pure gelatin were used to validate the strategy by comparison between simulated and experimental data such as density, backbone conformation angle distribution, and X-ray scattering spectra. A key result of the simulations was the prediction that increasing the number of aromatic functions attached to the gelatin chain leads to an increase in the number of physical netpoints observed in the simulated bulk packing models. By comparison with the Flory-Rehner model, this suggested reduced equilibrium swelling of the functionalized materials in water, a prediction that was subsequently confirmed by our experimental work. The reduction and control of the equilibrium degree of swelling in water is a key criterion for the applicability of functionalized gelatins when used, for example, as matrices for induced autoregeneration of tissues.}, language = {en} } @article{YuantenBrummelhuisJungingeretal.2011, author = {Yuan, Jiayin and ten Brummelhuis, Niels and Junginger, Mathias and Xie, Zailai and Lu, Yan and Taubert, Andreas and Schlaad, Helmut}, title = {Diversified applications of chemically modified 1,2-Polybutadiene}, series = {Macromolecular rapid communications}, volume = {32}, journal = {Macromolecular rapid communications}, number = {15}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1022-1336}, doi = {10.1002/marc.201100254}, pages = {1157 -- 1162}, year = {2011}, abstract = {Commercially available 1,2-PB was transformed into a well-defined reactive intermediate by quantitative bromination. The brominated polymer was used as a polyfunctional macroinitiator for the cationic ring-opening polymerization of 2-ethyl-2-oxazoline to yield a water-soluble brush polymer. Nucleophilic substitution of bromide by 1-methyl imidazole resulted in the formation of polyelectrolyte copolymers consisting of mixed units of imidazolium, bromo, and double bond. These copolymers, which were soluble in water without forming aggregates, were used as stabilizers in the heterophase polymerization of styrene and were also studied for their ionic conducting properties.}, language = {en} } @article{YinLinker2011, author = {Yin, Jian and Linker, Torsten}, title = {Stereoselective diversity-oriented syntheses of functionalized saccharides from bicyclic carbohydrate 1,2-lactones}, series = {Tetrahedron}, volume = {67}, journal = {Tetrahedron}, number = {13}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2011.01.069}, pages = {2447 -- 2461}, year = {2011}, abstract = {Bicyclic carbohydrate 1,2-lactones have been synthesized in only two steps and high yields by saponification and subsequent cyclization from known malonate addition products to glycals. The gluco-configured lactone serves as an important precursor for diversity-oriented syntheses. Thus, stereoselective opening of the lactone ring was realized with various nucleophiles in the presence of Sc(OTf)(3). This enabled the introduction of different substituents at the anomeric position, to afford a broad variety of 1-functionalized carbohydrates. On the other hand, stereoselective alpha-substitution of the gluco-configured lactone with different electrophiles and subsequent ring opening gives a collection of 2-functionalized saccharides. More than 30 products have been isolated in analytically pure form, and their configurations were unequivocally established by various NMR methods. Thus, carbohydrate 1,2-lactones are attractive precursors for the stereoselective synthesis of diverse saccharides.}, language = {en} } @article{YarmanNagelGajovicEichelmannetal.2011, author = {Yarman, Aysu and Nagel, Thomas and Gajovic-Eichelmann, Nenad and Fischer, Anna and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Bioelectrocatalysis by Microperoxidase-11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {23}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1040-0397}, doi = {10.1002/elan.201000535}, pages = {611 -- 618}, year = {2011}, abstract = {We report on the redox behaviour of the microperoxidase-11 (MP-11) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. MP-11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP-11 at high scan rate is between 350+/-50 pmol cm(-2), which reflects a multilayer process. The formal potential (E degrees') of MP-11 in the gold nanoparticles-chitosan film was estimated to be -(267.7+/-2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (k(s)) starts at 1.21 s(-1) and levels off at 6.45 s(-1) in the scan rate range from 0.1 to 2.0 V s(-1). Oxidation and reduction of MP-11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP-11.}, language = {en} } @article{XieWhiteWeberetal.2011, author = {Xie, Zai-Lai and White, Robin J. and Weber, Jens and Taubert, Andreas and Titirici, Magdalena M.}, title = {Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates}, series = {Journal of materials chemistry}, volume = {21}, journal = {Journal of materials chemistry}, number = {20}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c1jm00013f}, pages = {7434 -- 7442}, year = {2011}, abstract = {We report on the ionothermal synthesis of porous carbon materials from a variety of carbohydrate precursors (i.e. D-glucose, D-fructose, D-xylose, and starch) using 1-butyl-3-methylimidazolium tetrachloroferrate(III), [Bmim][FeCl(4)] as a reusable solvent and catalyst. The carbon materials derived from these different carbohydrates are similar in terms of particle size and chemical composition, possessing relatively high surface areas from 44 to 155 m(2) g(-1) after ionothermal processing, which can be significantly increased to > 350 m(2) g(-1) by further thermal treatment (e. g. post-carbonization at 750 degrees C). CO(2) and N(2) sorption analysis, combined with Hg intrusion porosimetry, reveals a promising hierarchical pore structuring to these carbon materials. The ionic liquid [Bmim][FeCl(4)] has a triple role: it acts as both a soft template to generate the characterized pore structuring, solvent and as a catalyst resulting in enhanced ionothermal carbon yields. Importantly from a process point of view, the ionic liquid can be successfully recovered and reused. The current work shows that ionothermal synthesis has the potential to be an effective, low cost, and green reusable synthetic route towards sustainable porous carbon materials.}, language = {en} } @article{XieTaubert2011, author = {Xie, Zai-Lai and Taubert, Andreas}, title = {Thermomorphic behavior of the ionic liquids [C(4)mim][FeCl4] and [C(12)mim][FeCl4]}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201000808}, pages = {364 -- 368}, year = {2011}, abstract = {The iron-containing ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate(III) [C(4)mim][FeCl4] and 1-dodecyl-3-methylimidazolium tetrachloroferrate(III) [C(12)mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 degrees C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35\% in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow-brown liquid phase recovered after phase separation is the starting IL [C(4)mim][FeCl4] and [C(12)mim][FeCl4], respectively. Photometry and ICP-OES show that about 40\% of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal-containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction.}, language = {en} } @misc{WischerhoffBadiLaschewskyetal.2011, author = {Wischerhoff, Erik and Badi, Nezha and Laschewsky, Andr{\´e} and Lutz, Jean-Francois}, title = {Smart polymer surfaces concepts and applications in biosciences}, series = {Advances in polymer science = Fortschritte der Hochpolymeren-Forschung}, volume = {240}, journal = {Advances in polymer science = Fortschritte der Hochpolymeren-Forschung}, number = {1}, editor = {B{\"o}rner, Hans Gerhard and Lutz, JF}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-20154-7}, issn = {0065-3195}, doi = {10.1007/12_2010_88}, pages = {1 -- 33}, year = {2011}, abstract = {Stimuli-responsive macromolecules (i.e., pH-, thermo-, photo-, chemo-, and bioresponsive polymers) have gained exponential importance in materials science, nanotechnology, and biotechnology during the last two decades. This chapter describes the usefulness of this class of polymer for preparing smart surfaces (e.g., modified planar surfaces, particles surfaces, and surfaces of three-dimensional scaffolds). Some efficient pathways for connecting these macromolecules to inorganic, polymer, or biological substrates are described. In addition, some emerging bioapplications of smart polymer surfaces (e.g., antifouling surfaces, cell engineering, protein chromatography, tissue engineering, biochips, and bioassays) are critically discussed.}, language = {en} } @article{WirthMonturetKlamrothetal.2011, author = {Wirth, Jonas and Monturet, Serge and Klamroth, Tillmann and Saalfrank, Peter}, title = {Adsorption and (photo-) electrochemical splitting of water on rutile ruthenium dioxide}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {93}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {6}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/93/68001}, pages = {6}, year = {2011}, abstract = {In this work, the adsorption and splitting of the water molecule by light and/or an external potential is investigated in the frame of (photo-) electrochemical cells using a rutile ruthenium dioxide anode. With the help of periodic density functional calculations, the adsorbed structures of H(2)O and some radicals involved in the splitting process (O, OH, OOH) are obtained and compared with the available experimental results. On the basis of these electronic-structure calculations, we use a method to calculate the stability of the reaction intermediates and conclude on the thermodynamical possibility of the water splitting reaction at the surface. We demonstrate that a moderate overpotential of 0.64 V is required for the reaction to take place at the RuO(2)(110) surface.}, language = {en} } @article{WessigWawrzinekMoellnitzetal.2011, author = {Wessig, Pablo and Wawrzinek, Robert and Moellnitz, Kristian and Feldbusch, Elvira and Schilde, Uwe}, title = {A new class of fluorescent dyes based on 1,3-benzodioxole and [1,3]-dioxolo[4.5-f]benzodioxole}, series = {Tetrahedron letters}, volume = {52}, journal = {Tetrahedron letters}, number = {46}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2011.09.058}, pages = {6192 -- 6195}, year = {2011}, abstract = {We report on synthesis and photophysical properties of a new class of fluorescent dyes. They are characterized by large Stokes-shifts, long fluorescence lifetimes in organic solvents and a pronounced dependency of the fluorescence lifetime on the solvent polarity. Also worthy of note is the high bleaching stability. To provide access to biochemical and medical applications a series of derivatives were prepared, which exhibit specific reactivity towards different biologically relevant functional groups (carboxylic acids, amines, maleimides, N-hydroxysuccinimide esters). Furthermore, two alkynes were prepared, which could be used in 'Click' chemistry.}, language = {en} } @article{WessigPickSchilde2011, author = {Wessig, Pablo and Pick, Charlotte and Schilde, Uwe}, title = {First example of an atropselective dehydro-Diels-Alder (ADDA) reaction}, series = {Tetrahedron letters}, volume = {52}, journal = {Tetrahedron letters}, number = {32}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2011.06.024}, pages = {4221 -- 4223}, year = {2011}, abstract = {A new concept of a stereoselective synthesis of axially chiral biaryls, formed in the course of the dehydro-Diels-Alder (DDA) reaction, has been disclosed. It is based on asymmetric induction of the newly formed chirality axis by a chirality center, which is present in the two synthesized DDA reactants. Depending on the different length of the linkers joining the alkyne moieties the DDA reaction may be triggered photochemically or thermally, where only the thermal variant was stereoselective.}, language = {en} } @article{WessigPick2011, author = {Wessig, Pablo and Pick, Charlotte}, title = {Photochemical synthesis and properties of axially chiral naphthylpyridines}, series = {Journal of photochemistry and photobiology : A, Chemistry}, volume = {222}, journal = {Journal of photochemistry and photobiology : A, Chemistry}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {1010-6030}, doi = {10.1016/j.jphotochem.2011.06.006}, pages = {263 -- 265}, year = {2011}, abstract = {Five alkynyl pyridines were prepared and cyclized to naphthylpyridines as the main products in the course of a Photo-Dehydro-Diels-Alder reaction. Four of the final products are axially chiral and the determination of the rotational barrier by DFT calculations, dynamic NMR and H PLC experiments is demonstrated. (C) 2011 Elsevier B.V. All rights reserved.}, language = {en} } @article{WessigMoellnitzKellingetal.2011, author = {Wessig, Pablo and M{\"o}llnitz, Kristian and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of 1r,2c,3c,4t,5t,6t-1,2,3,4,5,6-hexakis-trimethylsilanyloxy-cyclohexane, C24H60O6Si6}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {226}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, number = {2}, publisher = {De Gruyter Oldenbourg}, address = {M{\"u}nchen}, issn = {1433-7266}, doi = {10.1524/ncrs.2011.0105}, pages = {228 -- 230}, year = {2011}, abstract = {C24H60O6Si6, triclinic, P (1) over bar (no. 2), a = 11.307(2) angstrom, b = 12.159(2) angstrom, = 16.576(2) angstrom, alpha = 109.47(1)degrees, beta = 94.64(1)degrees, gamma = 111.65(1)degrees, V = 1942.3 angstrom(3), Z = 2, R-gt(F) = 0.043, wR(ref)(F-2) = 0.118, T = 210 K.}, language = {en} } @article{WessigMatthesPick2011, author = {Wessig, Pablo and Matthes, Annika and Pick, Charlotte}, title = {The photo-dehydro-Diels-Alder (PDDA) reaction}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {9}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {22}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/c1ob06066j}, pages = {7599 -- 7605}, year = {2011}, abstract = {The photo-dehydro-Diels-Alder (PDDA) reaction is a valuable extension of the classical Diels-Alder (DA) reaction. The PDDA reaction differs from the DA reaction by the replacement of one of the C-C-double bonds of the diene moiety by a C-C triple bond and by the photochemical triggering of the reaction. This entails that, in contrast to the DA reaction, the PDDA reaction proceeds according to a multistage mechanism with biradicals and cycloallenes as intermediates. The PDDA reaction provides access to a considerable variety of compound classes. For example, 1-phenylnaphthlenes, 1,1'-binaphthyls, N-heterocyclic biaryls, and naphthalenophanes could be obtained by this reaction.}, language = {en} } @article{WessigMatthes2011, author = {Wessig, Pablo and Matthes, Annika}, title = {Preparation of Strained Axially Chiral (1,5)Naphthalenophanes by Photo-dehydro-Diels-Alder Reaction}, series = {Journal of the American Chemical Society}, volume = {133}, journal = {Journal of the American Chemical Society}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja109118m}, pages = {2642 -- 2650}, year = {2011}, abstract = {The preparation of 10 (1,5)naphthalenophanes (10a-j) by photo-dehydro-Diels-Alder (PDDA) reaction is described. Owing to hindered rotation around the biaryl axis, compounds 10 are axially chiral and the separation of enantiomers by chiral HPLC was demonstrated in three cases (10a,b,e). The absolute configuration of the isolated enantiomers could be unambiguously determined by comparison of calculated and measured circular dichroism (CD) spectra. Furthermore, we analyzed ring strain phenomena of (1,5)naphthalenophanes 10. Depending on the length of the linker units, one can distinguish three classes of naphthalenophanes. Compounds 10a-c are highly strained (E-STR = 7-31 kcal/mol), and the strain is caused by small bond angles in the linker unit and deformation of the naphthalene moiety. Another type of strain is observed if the linker unit becomes relatively long (10g,h) originating from transannular interactions and is comparable with the well-known strain of medium sized rings. The naphthalenophanes 10d-f with a linker length of 10-14 atoms are only marginally strained. To clearly discriminate the different sources of strain, we defined two geometrical parameters (average central dihedral angle delta(C) and naphthalene thickness D-N) and demonstrated that they are well-suited to indicate naphthalene deformation of our naphthalenophanes 10 as well as of ten model naphthalenophanes (I-X) with different linker lengths and linking positions.}, language = {en} } @article{WellertTierschKoetzetal.2011, author = {Wellert, Stefan and Tiersch, Brigitte and Koetz, Joachim and Richardt, Andre and Lapp, Alain and Holderer, Olaf and Gaeb, Juergen and Blum, Marc-Michael and Schulreich, Christoph and Stehle, Ralf and Hellweg, Thomas}, title = {The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions structure, dynamics, and enzyme activity}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {40}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, doi = {10.1007/s00249-011-0689-0}, pages = {761 -- 774}, year = {2011}, abstract = {The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is of great interest because of its ability to catalyze the hydrolysis of highly toxic organophosphates. In this work, the enzyme structure in solution (native state) was studied by use of different scattering methods. The results are compared with those from hydrodynamic model calculations based on the DFPase crystal structure. Bicontinuous microemulsions made of sugar surfactants are discussed as host systems for the DFPase. The microemulsion remains stable in the presence of the enzyme, which is shown by means of scattering experiments. Moreover, activity assays reveal that the DFPase still has high activity in this complex reaction medium. To complement the scattering experiments cryo-SEM was also employed to study the microemulsion structure.}, language = {en} } @phdthesis{Weiss2011, author = {Weiß, Jan}, title = {Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53360}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step.}, language = {en} } @article{WeissLaschewsky2011, author = {Weiss, Jan and Laschewsky, Andr{\´e}}, title = {Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions}, series = {Langmuir}, volume = {27}, journal = {Langmuir}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la200115p}, pages = {4465 -- 4473}, year = {2011}, abstract = {A series of triple-thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (PNPAM, A), poly(methoxydiethylene glycol acrylate) (PMDEGA, B), and poly(N-ethylacrylamide) (PNEAM, C) was synthesized by sequential reversible addition-fragmentation chain transfer polymerizations. Polymers of differing block sequences, ABC, BAC, and ACB, with increasing phase transition temperatures in the order A < B < C were prepared. Their aggregation behavior in dilute aqueous solution was investigated using dynamic light scattering, turbidimetry, and NMR spectroscopy. The self-organization of such polymers was found to dependent strongly on the block sequence. While polymers with a terminal low-LCST (lower critical solution temperature) block undergo aggregation above the first phase transition temperature at 20-25 degrees C, triblock copolymers with the low-LCST block in the middle show aggregation only above the second phase transition. The collapse of the middle block is not sufficient to induce aggregation but produces instead stable, unimolecular micelles with a collapsed middle block, as supported by NMR and fluorescence probe data. Continued heating of all copolymers led to two additional thermal transitions at 40-55 and 70-80 degrees C, which could be correlated to the phase transitions of the B and C blocks, respectively. All polymers show a high tendency for cluster formation, once aggregation is induced. The carrier abilities of the triple responsive triblock copolymers for hydrophobic agents were probed with the solvatochromic fluorescence dye Nile Red. With passing through the first thermal transition, the block copolymers are capable of solubilizing Nile Red. In the case of block copolymers with sequences ABC or ACB, which bear the low-LCST block at one terminus, notable amounts of dye are solubilized already at this stage. In contrast, the hydrophobic probe is much less efficiently incorporated by the BAC triblock copolymer, which forms unimolecular micelles. Only after the collapse of the B block, when reaching the second phase transition at about 45 degrees C, does aggregation occur and solubilization becomes efficient. In the case of ABC and ACB polymers, the hydrophobic probe seems to partition between the originally collapsed A chains and the additional hydrophobic chains formed after the collapse of the less hydrophobic B block.}, language = {en} } @article{WeissBoettcherLaschewsky2011, author = {Weiss, Jan and B{\"o}ttcher, Christoph and Laschewsky, Andr{\´e}}, title = {Self-assembly of double thermoresponsive block copolymers end-capped with complementary trimethylsilyl groups}, series = {Soft matter}, volume = {7}, journal = {Soft matter}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c0sm00531b}, pages = {483 -- 492}, year = {2011}, abstract = {A set of double thermoresponsive diblock copolymers poly(N-n-propylacrylamide)-block-poly(N-ethylacrylamide) (PNPAM-b-PNEAM) was synthesised by sequential reversible addition-fragmentation chain transfer (RAFT) polymerisations. Using a twofold trimethylsilyl (TMS)-labeled RAFT-agent, the relative size of the two blocks was varied. While soluble as unimers below 15 degrees C, all copolymers exhibited thermally induced two-step self-assembly in water, due to distinct lower critical solution temperature (LCST) phase transitions of PNPAM (around 20 degrees C) and PNEAM (around 70 degrees C). Their temperature-dependent self-organisation in dilute aqueous solution was studied by turbidimetry, dynamic light scattering, transmission electron microscopy, and (1)H NMR spectroscopy. The copolymers show distinct, two-step self-organisation behaviour with respect to transition temperatures, aggregate type and size, which can be correlated to the relative lengths of the low and high LCST blocks. For polymers having short blocks with low LCST, the first thermal transition induces the formation of individual micelles. Further heating above the second thermal transition results reversibly either in a shrink of the micelle size or in aggregation of the micelles, with hydrodynamic diameters below 250 nm. In contrast in the case of polymers having a long block with low LCST, the first thermal transition already leads to clusters of micelles, while the second thermal transition makes the clusters shrink. Noteworthy, the twofold TMS-labeled end groups report not only on the molar masses of the polymers, but can simultaneously serve as NMR-probes for the self-assembly process. The signal of the TMS-aryl end group displays a reversible temperature dependent, two-step splitting that is indicative of the self-organisation of the block copolymers.}, language = {en} }