@article{VindasPicadoYaneyKellerStAndrewsetal.2020, author = {Vindas-Picado, Jos{\´e} and Yaney-Keller, Adam and St. Andrews, Laura and Panagopoulou, Aliki and Santidri{\´a}n Tomillo, Pilar}, title = {Effectiveness of shading to mitigate the impact of high temperature on sea turtle clutches considering the effect on primary sex ratios}, series = {Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change}, volume = {25}, journal = {Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {1381-2386}, doi = {10.1007/s11027-020-09932-3}, pages = {1509 -- 1521}, year = {2020}, abstract = {Developmental success of sea turtle clutches depends on incubation temperature, which also determines sex ratio of hatchlings. As global temperatures are rising, several studies have proposed mitigation strategies such as irrigation and shading to increase hatching success. Our study expands upon this research and measures the effects of using boxes with different degrees of shade coverage (50\%, 80\%, and 90\%) on sand temperature and water content. Boxes were fully covered with fabric in 2017/2018 (top and sides) but were side open in 2018/2019. We took measurements at olive ridley (Lepidochelys olivacea) and leatherback (Dermochelys coriacea) turtle nest depths (45 and 75 cm) at Playa Grande, Costa Rica. Shading reduced temperature by up to 0.8 degrees C and up to 0.4 degrees C at 45 cm and 75 cm, respectively. There were statistically significant differences between shading and control treatments at both depths, but differences between shade treatments were only significant when using side open boxes, possibly due to air flow. Shading had no effect on water content. While the impact of using shaded boxes on temperature was low, the potential impact on primary sex ratios was large. If shading were applied to leatherback clutches, the percentage of female hatchlings could vary by up to 50\%, with a maximum difference around the pivotal temperature (temperature with 1:1 sex ratio). Shading can be useful to increase hatching success, but we recommend avoiding it at temperatures within the transitional range (temperatures that produce both sexes), or using it only during the last third of incubation, when sex is already determined. As global warming will likely continue, understanding potential impact and effectiveness of mitigation strategies may be critical for the survival of threatened sea turtle populations.}, language = {en} } @article{Ungelenk2021, author = {Ungelenk, Johannes}, title = {{\´E}mile Zola and the literary language of climate change}, series = {Nottingham French studies / University of Nottingham}, volume = {60}, journal = {Nottingham French studies / University of Nottingham}, number = {3}, publisher = {Edinburgh University Press}, address = {Edinburgh}, issn = {0029-4586}, doi = {10.3366/nfs.2021.0331}, pages = {362 -- 373}, year = {2021}, abstract = {On 7 February 1861, John Tyndall, professor of natural philosophy, delivered a historical lecture: he could prove that different gases absorb heat to a very different degree, which implies that the temperate conditions provided for by the Earth's atmosphere are dependent on its particular composition of gases. The theoretical foundation of climate science was laid. Ten years later, on the other side of the Channel, a young and ambitious author was working on a comprehensive literary analysis of the French era under the Second Empire. {\´E}mile Zola had probably not heard or read of Tyndall's discovery. However, the article makes the case for reading Zola's Rougon-Macquart as an extensive story of climate change. Zola's literary attempts to capture the defining characteristic of the Second Empire led him to the insight that its various milieus were all part of the same 'climate': that of an all-encompassing warming. Zola suggests that this climate is man-made: the economic success of the Second Empire is based on heating, in a literal and metaphorical sense, as well as on stoking the steam-engines and creating the hypertrophic atmosphere of the hothouse that enhances life and maximises turnover and profit. In contrast to Tyndall and his audience, Zola sensed the catastrophic consequences of this warming: the Second Empire was inevitably moving towards a final d{\´e}b{\^a}cle, i.e. it was doomed to perish in local and 'global' climate catastrophes. The article foregrounds the supplementary status of Tyndall's physical and Zola's literary knowledge. As Zola's striking intuition demonstrates, literature appears to have a privileged approach to the phenomenon of man-induced climate change.}, language = {en} } @article{SkalevagVormoor2021, author = {Sk{\aa}lev{\aa}g, Amalie and Vormoor, Klaus Josef}, title = {Daily streamflow trends in Western versus Eastern Norway and their attribution to hydro-meteorological drivers}, series = {Hydrological processes : an international journal}, volume = {35}, journal = {Hydrological processes : an international journal}, number = {8}, publisher = {Wiley}, address = {New York}, issn = {0885-6087}, doi = {10.1002/hyp.14329}, pages = {17}, year = {2021}, abstract = {Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (ostlandet) Norway by applying the Mann-Kendall test and Theil-Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983-2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. ostlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50\% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in ostlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.}, language = {en} } @article{MtilatilaBronstertVormoor2022, author = {Mtilatila, Lucy Mphatso Ng'ombe and Bronstert, Axel and Vormoor, Klaus Josef}, title = {Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa}, series = {Frontiers in Water}, journal = {Frontiers in Water}, publisher = {Frontiers Media S.A.}, address = {Lausanne, Schweiz}, issn = {2624-9375}, doi = {10.3389/frwa.2022.1041452}, pages = {1 -- 16}, year = {2022}, abstract = {The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50\% during 2021-2050 and between +131 and +388\% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture.}, language = {en} } @article{PanWangLiuetal.2020, author = {Pan, Xiaohui and Wang, Weishi and Liu, Tie and Huang, Yue and De Maeyer, Philippe and Guo, Chenyu and Ling, Yunan and Akmalov, Shamshodbek}, title = {Quantitative detection and attribution of groundwater level variations in the Amu Darya Delta}, series = {Water}, volume = {12}, journal = {Water}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12102869}, pages = {20}, year = {2020}, abstract = {In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from -189 cm to -350 cm. Until 2017, the groundwater level rose back to -211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: -0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85\%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection.}, language = {en} } @article{TesselaarBotzenHaeretal.2020, author = {Tesselaar, Max and Botzen, W. J. Wouter and Haer, Toon and Hudson, Paul and Tiggeloven, Timothy and Aerts, Jeroen C. J. H.}, title = {Regional inequalities in flood insurance affordability and uptake under climate change}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12208734}, pages = {30}, year = {2020}, abstract = {Flood insurance coverage can enhance financial resilience of households to changing flood risk caused by climate change. However, income inequalities imply that not all households can afford flood insurance. The uptake of flood insurance in voluntary markets may decline when flood risk increases as a result of climate change. This increase in flood risk may cause substantially higher risk-based insurance premiums, reduce the willingness to purchase flood insurance, and worsen problems with the unaffordability of coverage for low-income households. A socio-economic tipping-point can occur when the functioning of a formal flood insurance system is hampered by diminishing demand for coverage. In this study, we examine whether such a tipping-point can occur in Europe for current flood insurance systems under different trends in future flood risk caused by climate and socio-economic change. This analysis gives insights into regional inequalities concerning the ability to continue to use flood insurance as an instrument to adapt to changing flood risk. For this study, we adapt the "Dynamic Integrated Flood and Insurance" (DIFI) model by integrating new flood risk simulations in the model that enable examining impacts from various scenarios of climate and socio-economic change on flood insurance premiums and consumer demand. Our results show rising unaffordability and declining demand for flood insurance across scenarios towards 2080. Under a high climate change scenario, simulations show the occurrence of a socio-economic tipping-point in several regions, where insurance uptake almost disappears. A tipping-point and related inequalities in the ability to use flood insurance as an adaptation instrument can be mitigated by introducing reforms of flood insurance arrangements.}, language = {en} } @article{Reibold2022, author = {Reibold, Kerstin}, title = {Settler Colonialism, Decolonization, and Climate Change}, series = {Journal of applied philosophy}, journal = {Journal of applied philosophy}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0264-3758}, doi = {10.1111/japp.12573}, year = {2022}, abstract = {The article proposes that climate change makes enduring colonial injustices and structures visible. It focuses on the imposition and dominance of colonial concepts of land and self-determination on Indigenous peoples in settler states. It argues that if the dominance of these colonial frameworks remains unaddressed, the progressing climate change will worsen other colonial injustices, too. Specifically, Indigenous self-determination capabilities will be increasingly undermined, and Indigenous peoples will experience the loss of what they understand as relevant land from within their own ontologies of land. The article holds that even if settler states strive to repair colonial injustices, these efforts will be unsuccessful if climate change occurs and decolonization is pursued within the framework of a settler colonial ontology of land. Therefore, the article suggests, decolonization of the ontologies of land and concepts of self-determination is a precondition for a just response to climate change.}, language = {en} } @article{LecourieuxKappelPierietal.2017, author = {Lecourieux, Fatma and Kappel, Christian and Pieri, Philippe and Charon, Justine and Pillet, Jeremy and Hilbert, Ghislaine and Renaud, Christel and Gomes, Eric and Delrot, Serge and Lecourieux, David}, title = {Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00053}, pages = {23}, year = {2017}, abstract = {Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+8 degrees C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, raminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HI induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.}, language = {en} } @article{MeisslFormayerKlebinderetal.2017, author = {Meißl, Gertraud and Formayer, Herbert and Klebinder, Klaus and Kerl, Florian and Sch{\"o}berl, Friedrich and Geitner, Clemens and Markart, Gerhard and Leidinger, David and Bronstert, Axel}, title = {Climate change effects on hydrological system conditions influencing generation of storm runoff in small Alpine catchments}, series = {Hydrological processes : an international journal}, volume = {31}, journal = {Hydrological processes : an international journal}, number = {6}, publisher = {Wiley}, address = {New York}, issn = {0885-6087}, doi = {10.1002/hyp.11104}, pages = {1314 -- 1330}, year = {2017}, abstract = {Floods and debris flows in small Alpine torrent catchments (<10km(2)) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus, climate change may influence the magnitude-frequency relationship of extreme events twofold: by a modification of the occurrence probabilities of critical hydrological system conditions and by a change of event precipitation characteristics. Three small Alpine catchments in different altitudes in Western Austria (Ruggbach, Brixenbach and Langentalbach catchment) were investigated by both field experiments and process-based simulation. Rainfall-runoff model (HQsim) runs driven by localized climate scenarios (CNRM-RM4.5/ARPEGE, MPI-REMO/ECHAM5 and ICTP-RegCM3/ECHAM5) were used in order to estimate future frequencies of stormflow triggering system state conditions. According to the differing altitudes of the study catchments, two effects of climate change on the hydrological systems can be observed. On one hand, the seasonal system state conditions of medium altitude catchments are most strongly affected by air temperature-controlled processes such as the development of the winter snow cover as well as evapotranspiration. On the other hand, the unglaciated high-altitude catchment is less sensitive to climate change-induced shifts regarding days with critical antecedent soil moisture and desiccated litter layer due to its elevation-related small proportion of sensitive areas. For the period 2071-2100, the number of days with critical antecedent soil moisture content will be significantly reduced to about 60\% or even less in summer in all catchments. In contrast, the number of days with dried-out litter layers causing hydrophobic effects will increase by up to 8\%-11\% of the days in the two lower altitude catchments. The intensity analyses of heavy precipitation events indicate a clear increase in rain intensities of up to 10\%.}, language = {en} } @article{RybskiReusserWinzetal.2016, author = {Rybski, Diego and Reusser, Dominik Edwin and Winz, Anna-Lena and Fichtner, Christina and Sterzel, Till and Kropp, J{\"u}rgen}, title = {Cities as nuclei of sustainability?}, series = {Environment and Planning B: Urban Analytics and City Science}, volume = {44}, journal = {Environment and Planning B: Urban Analytics and City Science}, number = {3}, publisher = {Sage Publ.}, address = {London}, issn = {2399-8083}, doi = {10.1177/0265813516638340}, pages = {425 -- 440}, year = {2016}, abstract = {We have assembled CO2 emission figures from collections of urban GHG emission estimates published in peer-reviewed journals or reports from research institutes and non-governmental organizations. Analyzing the scaling with population size, we find that the exponent is development dependent with a transition from super- to sub-linear scaling. From the climate change mitigation point of view, the results suggest that urbanization is desirable in developed countries. Further, we compare this analysis with a second scaling relation, namely the fundamental allometry between city population and area, and propose that density might be a decisive quantity too. Last, we derive the theoretical country-wide urban emissions by integration and obtain a dependence on the size of the largest city.}, language = {en} } @article{Ungelenk2021, author = {Ungelenk, Johannes}, title = {{\´E}mile Zola and the Literary Language of Climate Change}, series = {Nottingham French Studies}, volume = {60}, journal = {Nottingham French Studies}, number = {3}, doi = {https://doi.org/10.3366/nfs.2021.0331}, pages = {362 -- 373}, year = {2021}, abstract = {On 7 February 1861, John Tyndall, professor of natural philosophy, delivered a historical lecture: he could prove that different gases absorb heat to a very different degree, which implies that the temperate conditions provided for by the Earth's atmosphere are dependent on its particular composition of gases. The theoretical foundation of climate science was laid. Ten years later, on the other side of the Channel, a young and ambitious author was working on a comprehensive literary analysis of the French era under the Second Empire. {\´E}mile Zola had probably not heard or read of Tyndall's discovery. However, the article makes the case for reading Zola's Rougon-Macquart as an extensive story of climate change. Zola's literary attempts to capture the defining characteristic of the Second Empire led him to the insight that its various milieus were all part of the same 'climate': that of an all-encompassing warming. Zola suggests that this climate is man-made: the economic success of the Second Empire is based on heating, in a literal and metaphorical sense, as well as on stoking the steam-engines and creating the hypertrophic atmosphere of the hothouse that enhances life and maximises turnover and profit. In contrast to Tyndall and his audience, Zola sensed the catastrophic consequences of this warming: the Second Empire was inevitably moving towards a final d{\´e}b{\^a}cle, i.e. it was doomed to perish in local and 'global' climate catastrophes. The article foregrounds the supplementary status of Tyndall's physical and Zola's literary knowledge. As Zola's striking intuition demonstrates, literature appears to have a privileged approach to the phenomenon of man-induced climate change.}, language = {en} } @article{PerringBernhardtRoemermannBaetenetal.2018, author = {Perring, Michael P. and Bernhardt-Roemermann, Markus and Baeten, Lander and Midolo, Gabriele and Blondeel, Haben and Depauw, Leen and Landuyt, Dries and Maes, Sybryn L. and De Lombaerde, Emiel and Caron, Maria Mercedes and Vellend, Mark and Brunet, Joerg and Chudomelova, Marketa and Decocq, Guillaume and Diekmann, Martin and Dirnboeck, Thomas and Doerfler, Inken and Durak, Tomasz and De Frenne, Pieter and Gilliam, Frank S. and Hedl, Radim and Heinken, Thilo and Hommel, Patrick and Jaroszewicz, Bogdan and Kirby, Keith J. and Kopecky, Martin and Lenoir, Jonathan and Li, Daijiang and Malis, Frantisek and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Petrik, Petr and Reczynska, Kamila and Schmidt, Wolfgang and Standovar, Tibor and Swierkosz, Krzysztof and Van Calster, Hans and Vild, Ondrej and Wagner, Eva Rosa and Wulf, Monika and Verheyen, Kris}, title = {Global environmental change effects on plant community composition trajectories depend upon management legacies}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14030}, pages = {1722 -- 1740}, year = {2018}, abstract = {The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.}, language = {en} } @article{OguntundeAbiodunLischeidetal.2020, author = {Oguntunde, Philip G. and Abiodun, Babatunde Joseph and Lischeid, Gunnar and Abatan, Abayomi A.}, title = {Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels}, series = {International Journal of Climatology}, volume = {40}, journal = {International Journal of Climatology}, number = {13}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {12}, year = {2020}, abstract = {This study investigates possible impacts of four global warming levels (GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) on drought characteristics over Niger River basin (NRB) and Volta River basin (VRB). Two drought indices-Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI)-were employed in characterizing droughts in 20 multi-model simulation outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The performance of the simulation in reproducing basic hydro-climatological features and severe drought characteristics (i.e., magnitude and frequency) in the basins were evaluated. The projected changes in the future drought frequency were quantified and compared under the four GWLs for two climate forcing scenarios (RCP8.5 and RCP4.5). The regional climate model (RCM) ensemble gives a realistic simulation of historical hydro-climatological variables needed to calculate the drought indices. With SPEI, the simulation ensemble projects an increase in the magnitude and frequency of severe droughts over both basins (NRB and VRB) at all GWLs, but the increase, which grows with the GWLs, is higher over NRB than over VRB. More than 75\% of the simulations agree on the projected increase at GWL1.5 and all simulations agree on the increase at higher GWLs. With SPI, the projected changes in severe drought is weaker and the magnitude remains the same at all GWLs, suggesting that SPI projection may underestimate impacts of the GWLs on the intensity and severity of future drought. The results of this study have application in mitigating impact of global warming on future drought risk over the regional water systems.}, language = {en} } @article{HuangPengRudayaetal.2018, author = {Huang, Xiaozhong and Peng, Wei and Rudaya, Natalia and Grimm, Eric C. and Chen, Xuemei and Cao, Xianyong and Zhang, Jun and Pan, Xiaoduo and Liu, Sisi and Chen, Chunzhu and Chen, Fahu}, title = {Holocene vegetation and climate dynamics in the Altai Mountains and Surrounding Areas}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL078028}, pages = {6628 -- 6636}, year = {2018}, abstract = {A comprehensive understanding of the regional vegetation responses to long-term climate change will help to forecast Earth system dynamics. Based on a new well-dated pollen data set from Kanas Lake and a review on the published pollen records in and around the Altai Mountains, the regional vegetation dynamics and forcing mechanisms are discussed. In the Altai Mountains, the forest optimum occurred during 10-7ka for the upper forest zone and the tree line decline and/or ecological shifts were caused by climatic cooling from around 7ka. In the lower forest zone, the forest reached an optimum in the middle Holocene, and then increased openness of the forest, possibly caused by both climate cooling and human activities, took place in the late Holocene. In the lower basins or plains around the Altai Mountains, the development of protograssland or forest benefited from increasing humidity in the middle to late Holocene. Plain Language Summary In the Altai Mountains and surrounding area of central Asia, the previous studies of the Holocene paleovegetation and paleoclimate studies did not discuss the different ecological limiting factors for the vegetation in high mountains and low-elevation areas due to limited data. With accumulating fossil pollen data and surface pollen data, it is possible to understand better the geomorphological effect on the vegetation and discrepancies of vegetation/forest responses to large-scale climate forcing, and it is also possible to get reliable quantitative reconstructions of climate. Here our new pollen data and review on the published fossil pollen data will help us to look into the past climate change and vertical evolution of vegetation in this important area of the Northern Hemisphere. Based on our study, it can be concluded that the growth of taiga forest in the wetter areas may be promoted under a future warmer climate, while the forest in the relatively dry areas is liable to decline, and the different vegetation dynamics will contribute to future high-resolution coupled vegetation-climate model for Earth system modelling.}, language = {en} } @article{GrimmSeyfarthMihoubGruberetal.2018, author = {Grimm-Seyfarth, Annegret and Mihoub, Jean-Baptiste and Gruber, Bernd and Henle, Klaus}, title = {Some like it hot}, series = {Ecological monographs}, volume = {88}, journal = {Ecological monographs}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1301}, pages = {336 -- 352}, year = {2018}, abstract = {Accumulating evidence has demonstrated considerable impact of climate change on biodiversity, with terrestrial ectotherms being particularly vulnerable. While climate-induced range shifts are often addressed in the literature, little is known about the underlying ecological responses at individual and population levels. Using a 30-yr monitoring study of the long-living nocturnal gecko Gehyra variegata in arid Australia, we determined the relative contribution of climatic factors acting locally (temperature, rainfall) or distantly (La Nina induced flooding) on ecological processes ranging from traits at the individual level (body condition, body growth) to the demography at population level (survival, sexual maturity, population sizes). We also investigated whether thermoregulatory activity during both active (night) and resting (daytime) periods of the day can explain these responses. Gehyra variegata responded to local and distant climatic effects. Both high temperatures and high water availability enhanced individual and demographic parameters. Moreover, the impact of water availability was scale independent as local rainfall and La Nina induced flooding compensated each other. When water availability was low, however, extremely high temperatures delayed body growth and sexual maturity while survival of individuals and population sizes remained stable. This suggests a trade-off with traits at the individual level that may potentially buffer the consequences of adverse climatic conditions at the population level. Moreover, hot temperatures did not impact nocturnal nor diurnal behavior. Instead, only cool temperatures induced diurnal thermoregulatory behavior with individuals moving to exposed hollow branches and even outside tree hollows for sun-basking during the day. Since diurnal behavioral thermoregulation likely induced costs on fitness, this could decrease performance at both individual and population level under cool temperatures. Our findings show that water availability rather than high temperature is the limiting factor in our focal population of G.variegata. In contrast to previous studies, we stress that drier rather than warmer conditions are expected to be detrimental for nocturnal desert reptiles. Identifying the actual limiting climatic factors at different scales and their functional interactions at different ecological levels is critical to be able to predict reliably future population dynamics and support conservation planning in arid ecosystems.}, language = {en} } @article{vanKleunenEsslPergletal.2018, author = {van Kleunen, Mark and Essl, Franz and Pergl, Jan and Brundu, Giuseppe and Carboni, Marta and Dullinger, Stefan and Early, Regan and Gonzalez-Moreno, Pablo and Groom, Quentin J. M. and Hulme, Philip E. and Kueffer, Christoph and K{\"u}hn, Ingolf and Maguas, Cristina and Maurel, Noelie and Novoa, Ana and Parepa, Madalin and Pysek, Petr and Seebens, Hanno and Tanner, Rob and Touza, Julia and Verbrugge, Laura and Weber, Ewald and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Klonner, Guenther and Talluto, Matthew V. and Dehnen-Schmutz, Katharina}, title = {The changing role of ornamental horticulture in alien plant invasions}, series = {Biological reviews}, volume = {93}, journal = {Biological reviews}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1464-7931}, doi = {10.1111/brv.12402}, pages = {1421 -- 1437}, year = {2018}, abstract = {The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75\% and 93\% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions.}, language = {en} } @article{SteffenRoeckstromRichardsonetal.2018, author = {Steffen, Will and R{\"o}ckstrom, Johan and Richardson, Katherine and Lenton, Timothy M. and Folke, Carl and Liverman, Diana and Summerhayes, Colin P. and Barnosky, Anthony D. and Cornell, Sarah E. and Crucifix, Michel and Donges, Jonathan and Fetzer, Ingo and Lade, Steven J. and Scheffer, Marten and Winkelmann, Ricarda and Schellnhuber, Hans Joachim}, title = {Trajectories of the Earth System in the Anthropocene}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {33}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1810141115}, pages = {8252 -- 8259}, year = {2018}, abstract = {We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.}, language = {en} } @article{TapeJonesArpetal.2018, author = {Tape, Ken D. and Jones, Benjamin M. and Arp, Christopher D. and Nitze, Ingmar and Grosse, Guido}, title = {Tundra be dammed}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14332}, pages = {4478 -- 4488}, year = {2018}, abstract = {Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293km(2)) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.}, language = {en} } @article{CochLamoureuxKnoblauchetal.2018, author = {Coch, Caroline and Lamoureux, Scott F. and Knoblauch, Christian and Eischeid, Isabell and Fritz, Michael and Obu, Jaroslav and Lantuit, Hugues}, title = {Summer rainfall dissolved organic carbon, solute, and sediment fluxes in a small Arctic coastal catchment on Herschel Island (Yukon Territory, Canada)}, series = {Artic science}, volume = {4}, journal = {Artic science}, number = {4}, publisher = {Canadian science publishing}, address = {Ottawa}, issn = {2368-7460}, doi = {10.1139/as-2018-0010}, pages = {750 -- 780}, year = {2018}, abstract = {Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could bemobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014-2016, mean dissolved organic matter flux over 17 days amounted to 82.7 +/- 30.7 kg km(-2) and mean total dissolved solids flux to 5252 +/- 1224 kg km(-2). Flux of suspended sediment was 7245 kg km(-2) in 2015, and 369 kg km(-2) in 2016. We found that 2.0\% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes.}, language = {en} } @article{TabaresJimenezZimmermannDietzeetal.2019, author = {Tabares Jimenez, Ximena del Carmen and Zimmermann, Heike Hildegard and Dietze, Elisabeth and Ratzmann, Gregor and Belz, Lukas and Vieth-Hillebrand, Andrea and Dupont, Lydie and Wilkes, Heinz and Mapani, Benjamin and Herzschuh, Ulrike}, title = {Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5955}, pages = {962 -- 979}, year = {2019}, abstract = {Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.}, language = {en} }