@phdthesis{Wischnewski2011, author = {Wischnewski, Juliane}, title = {Reconstructing climate variability on the Tibetan Plateau : comparing aquatic and terrestrial signals}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52453}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Spatial and temporal temperature and moisture patterns across the Tibetan Plateau are very complex. The onset and magnitude of the Holocene climate optimum in the Asian monsoon realm, in particular, is a subject of considerable debate as this time period is often used as an analogue for recent global warming. In the light of contradictory inferences regarding past climate and environmental change on the Tibetan Plateau, I have attempted to explain mismatches in the timing and magnitude of change. Therefore, I analysed the temporal variation of fossil pollen and diatom spectra and the geochemical record from palaeo-ecological records covering different time scales (late Quaternary and the last 200 years) from two core regions in the NE and SE Tibetan Plateau. For interpretation purposes I combined my data with other available palaeo-ecological data to set up corresponding aquatic and terrestrial proxy data sets of two lake pairs and two sets of sites. I focused on the direct comparison of proxies representing lacustrine response to climate signals (e.g., diatoms, ostracods, geochemical record) and proxies representing changes in the terrestrial environment (i.e., terrestrial pollen), in order to asses whether the lake and its catchments respond at similar times and magnitudes to environmental changes. Therefore, I introduced the established numerical technique procrustes rotation as a new approach in palaeoecology to quantitatively compare raw data of any two sedimentary records of interest in order to assess their degree of concordance. Focusing on the late Quaternary, sediment cores from two lakes (Kuhai Lake 35.3°N; 99.2°E; 4150 m asl; and Koucha Lake 34.0°N; 97.2°E; 4540 m asl) on the semi-arid northeastern Tibetan Plateau were analysed to identify post-glacial vegetation and environmental changes, and to investigate the responses of lake ecosystems to such changes. Based on the pollen record, five major vegetation and climate changes could be identified: (1) A shift from alpine desert to alpine steppe indicates a change from cold, dry conditions to warmer and more moist conditions at 14.8 cal. ka BP, (2) alpine steppe with tundra elements points to conditions of higher effective moisture and a stepwise warming climate at 13.6 cal. ka BP, (3) the appearance of high-alpine meadow vegetation indicates a further change towards increased moisture, but with colder temperatures, at 7.0 cal. ka BP, (4) the reoccurrence of alpine steppe with desert elements suggests a return to a significantly colder and drier phase at 6.3 cal. ka BP, and (5) the establishment of alpine steppe-meadow vegetation indicates a change back to relatively moist conditions at 2.2 cal. ka BP. To place the reconstructed climate inferences from the NE Tibetan Plateau into the context of Holocene moisture evolution across the Tibetan Plateau, I applied a five-scale moisture index and average link clustering to all available continuous pollen and non-pollen palaeoclimate records from the Tibetan Plateau, in an attempt to detect coherent regional and temporal patterns of moisture evolution on the Plateau. However, no common temporal or spatial pattern of moisture evolution during the Holocene could be detected, which can be assigned to the complex responses of different proxies to environmental changes in an already very heterogeneous mountain landscape, where minor differences in elevation can result in marked variations in microenvironments. Focusing on the past 200 years, I analysed the sedimentary records (LC6 Lake 29.5°N, 94.3°E, 4132 m asl; and Wuxu Lake 29.9°N, 101.1°E, 3705 m asl) from the southeastern Tibetan Plateau. I found that despite presumed significant temperature increases over that period, pollen and diatom records from the SE Tibetan Plateau reveal only very subtle changes throughout their profiles. The compositional species turnover investigated over the last 200 years appears relatively low in comparison to the species reorganisations during the Holocene. The results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem. Forest clearances and reforestation have not caused forest decline in our study area, but a conversion of natural forests to semi-natural secondary forests. The results from the numerical proxy comparison of the two sets of two pairs of Tibetan lakes indicate that the use of different proxies and the work with palaeo-ecological records from different lake types can cause deviant stories of inferred change. Irrespective of the timescale (Holocene or last 200 years) or region (SE or NE Tibetan Plateau) analysed, the agreement in terms of the direction, timing, and magnitude of change between the corresponding terrestrial data sets is generally better than the match between the corresponding lacustrine data sets, suggesting that lacustrine proxies may partly be influenced by in-lake or local catchment processes whereas the terrestrial proxy reflects a more regional climatic signal. The current disaccord on coherent temporal and spatial climate patterns on the Tibetan Plateau can partly be ascribed to the complexity of proxy response and lake systems on the Tibetan Plateau. Therefore, a multi-proxy, multi-site approach is important in order to gain a reliable climate interpretation for the complex mountain landscape of the Tibetan Plateau.}, language = {en} } @article{HerzschuhNiBirksetal.2011, author = {Herzschuh, Ulrike and Ni, Jian and Birks, H. John B. and B{\"o}hner, J{\"u}rgen}, title = {Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {30}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {15-16}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2011.03.007}, pages = {1907 -- 1917}, year = {2011}, abstract = {Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97 degrees N; 90.3 degrees E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by similar to 150-180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously 'natural' Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial-interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases.}, language = {en} } @article{MischkeZhang2011, author = {Mischke, Steffen and Zhang, Chengjun}, title = {Ostracod distribution in Ulungur Lake (Xinjiang, China) and a reassessed Holocene record}, series = {Ecological research}, volume = {26}, journal = {Ecological research}, number = {1}, publisher = {Springer}, address = {Tokyo}, issn = {0912-3814}, doi = {10.1007/s11284-010-0768-1}, pages = {133 -- 145}, year = {2011}, abstract = {Ostracod shells in surface sediments from Ulungur Lake (Xinjiang, China) belong mainly to Limnocythere inopinata as the dominant species, and Candona neglecta and Darwinula stevensoni as accompanying, less abundant taxa. Shells of an additional nine species were recorded only sporadically. The three most abundant ostracods have wide tolerance ranges in terms of salinity, substrate and water depth. The similarly recorded bivalve Pisidium subtruncatum, and the gastropods Gyraulus chinensis and Radix auricularia belong to the most tolerant representatives of the genera. The bivalve and gastropods, in addition to the ostracod assemblage, reflect the fact that Ulungur Lake has experienced strong lake level and salinity variations due to water withdrawal in the catchment and the counteracting diversion of river waters to the lake in recent decades. The substrate in Ulungur Lake is typically fine-grained, apart from the delta region of the Ulungur River channel, which is marked by relatively coarse-grained detrital sediments barren of ostracod shells. This channel was created 40 years ago to divert water to Ulungur Lake and support its local fisheries and recreational facilities. A reassessed Holocene ostracod record from the lake shows that a significantly higher salinity and lower lake level existed in the early Holocene before 6.0 ka in response to the regional climate. In contrast, a higher lake level and lowest salinity is inferred for the late Holocene period between ca. 3.6 and 1.3 ka before present. Afterwards, the lake level declined and salinity increased in response to regional moisture reduction, although conditions similar to the early Holocene lake status were not re-established. Our surface-sediment-derived data provide a baseline for analysis of future environmental variations due to global climate change and regional water management.}, language = {en} } @article{WangHerzschuh2011, author = {Wang, Yongbo and Herzschuh, Ulrike}, title = {Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model}, series = {Review of palaeobotany and palynology : an international journal}, volume = {168}, journal = {Review of palaeobotany and palynology : an international journal}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0034-6667}, doi = {10.1016/j.revpalbo.2011.09.004}, pages = {31 -- 40}, year = {2011}, abstract = {Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen-vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 +/- 0.432 for Artemisia and 5.379 +/- 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 +/- 0.012). whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen-vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO(2) concentrations) and implications (such as for land surface-climate feedbacks, carbon storage, and biodiversity) of vegetation change.}, language = {en} } @phdthesis{Wang2011, author = {Wang, Yongbo}, title = {Late glacial to Holocene climate and vegetation changes on the Tibetan Plateau inferred from fossil pollen records in lacustrine sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63155}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The past climate in central Asia, and especially on the Tibetan Plateau (TP), is of great importance for an understanding of global climate processes and for predicting the future climate. As a major influence on the climate in this region, the Asian Summer Monsoon (ASM) and its evolutionary history are of vital importance for accurate predictions. However, neither the evolutionary pattern of the summer monsoon nor the driving mechanisms behind it are yet clearly understood. For this research, I first synthesized previously published Late Glacial to Holocene climatic records from monsoonal central Asia in order to extract the general climate signals and the associated summer monsoon intensities. New climate and vegetation sequences were then established using improved quantitative methods, focusing on fossil pollen records recovered from Tibetan lakes and also incorporating new modern datasets. The pollen-vegetation and vegetation-climate relationships on the TP were also evaluated in order to achieve a better understanding of fossil pollen records. The synthesis of previously published moisture-related palaeoclimate records in monsoonal central Asia revealed generally different temporal patterns for the two monsoonal subsystems, i.e. the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM). The ISM appears to have experienced maximum wet conditions during the early Holocene, while many records from the area affected by the EASM indicate relatively dry conditions at that time, particularly in north-central China where the maximum moisture levels occurred during the middle Holocene. A detailed consideration of possible driving factors affecting the summer monsoon, including summer solar insolation and sea surface temperatures, revealed that the ISM was primarily driven by variations in northern hemisphere solar insolation, and that the EASM may have been constrained by the ISM resulting in asynchronous patterns of evolution for these two subsystems. This hypothesis is further supported by modern monsoon indices estimated using the NCEP/NCAR Reanalysis data from the last 50 years, which indicate a significant negative correlation between the two summer monsoon subsystems. By analogy with the early Holocene, intensification of the ISM during coming decades could lead to increased aridification elsewhere as a result of the asynchronous nature of the monsoon subsystems, as can already be observed in the meteorological data from the last 15 years. A quantitative climate reconstruction using fossil pollen records was achieved through analysis of sediment core recovered from Lake Donggi Cona (in the north-eastern part of the TP) which has been dated back to the Last Glacial Maximum (LGM). A new data-set of modern pollen collected from large lakes in arid to semi-arid regions of central Asia is also presented herein. The concept of "pollen source area" was introduced to modern climate calibration based on pollen from large lakes, and was applied to the fossil pollen sequence from Lake Donggi Cona. Extremely dry conditions were found to have dominated the LGM, and a subsequent gradually increasing trend in moisture during the Late Glacial period was terminated by an abrupt reversion to a dry phase that lasted for about 1000 years and coincided with the first Heinrich Event of the northern Atlantic region. Subsequent periods corresponding to the warm B{\o}lling-Aller{\o}d period and the Younger Dryas cold event were followed by moist conditions during the early Holocene, with annual precipitation of up to about 400 mm. A slightly drier trend after 9 cal ka BP was then followed by a second wet phase during the middle Holocene that lasted until 4.5 cal ka BP. Relatively steady conditions with only slight fluctuations then dominated the late Holocene, resulting in the present climatic conditions. In order to investigate the relationship between vegetation and climate, temporal variations in the possible driving factors for vegetation change on the northern TP were examined using a high resolution late Holocene pollen record from Lake Kusai. Moving-window Redundancy Analyses (RDAs) were used to evaluate the correlations between pollen assemblages and individual sedimentary proxies. These analyses have revealed frequent fluctuations in the relative abundances of alpine steppe and alpine desert components, and in particular a decrease in the total vegetation cover at around 1500 cal a BP. The climate was found to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, after the 1500 cal a BP threshold in vegetation cover was crossed the vegetation appears to have been affected more by extreme events such as dust storms or fluvial erosion than by the general climatic trends. In addition, pollen spectra over the last 600 years have been revealed by Procrustes analysis to be significantly different from those recovered from older samples, which is attributed to an increased human impact that resulted in unprecedented changes to the composition of the vegetation. Theoretical models that have been developed and widely applied to the European area (i.e. the Extended R-Value (ERV) model and the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model) have been applied to the high alpine TP ecosystems in order to investigate the pollen-vegetation relationships, as well as for quantitative reconstructions of vegetation abundance. The modern pollen-vegetation relationships for four common pollen species on the TP have been investigated using Poaceae as the reference taxa. The ERV Submodel 2 yielded relatively high PPEs for the steppe and desert taxa (Artemisia Chenopodiaceae), and low PPEs for the Cyperaceae that are characteristic of the alpine Kobresia meadows. The plant abundances on the central and north-eastern TP were quantified by applying these PPEs to four post-Late Glacial fossil pollen sequences. The reconstructed vegetation assemblages for the four pollen sequences always yielded smaller compositional species turnovers than suggested by the pollen spectra, indicating that the strength of the previously-reported vegetation changes may therefore have been overestimated. In summary, the key findings of this thesis are that (a) the two ASM subsystems show asynchronous patterns during both the Holocene and modern time periods, (b) fossil pollen records from large lakes reflect regional signals for which the pollen source areas need to be taken into account, (c) climate is not always the main driver for vegetation change, and (d) previously reported vegetation changes on the TP may have been overestimated because they ignored inter-species variations in pollen productivity.}, language = {en} } @phdthesis{Lauterbach2011, author = {Lauterbach, Stefan}, title = {Lateglacial to Holocene climatic and environmental changes in Europe : multi-proxy studies on lake sediments along a transect from northern Italy to northeastern Poland}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58157}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Sediment records of three European lakes were investigated in order to reconstruct the regional climate development during the Lateglacial and Holocene, to investigate the response of local ecosystems to climatic fluctuations and human impact and to relate regional peculiarities of past climate development to climatic changes on a larger spatial scale. The Lake Hańcza (NE Poland) sediment record was studied with a focus on reconstructing the early Holocene climate development and identifying possible differences to Western Europe. Following the initial Holocene climatic improvement, a further climatic improvement occurred between 10 000 and 9000 cal. a BP. Apparently, relatively cold and dry climate conditions persisted in NE Poland during the first ca. 1500 years of the Holocene, most likely due to a specific regional atmospheric circulation pattern. Prevailing anticyclonic circulation linked to a high-pressure cell above the remaining Scandinavian Ice Sheet (SIS) might have blocked the eastward propagation of warm and moist Westerlies and thus attenuated the early Holocene climatic amelioration in this region until the final decay of the SIS, a pattern different from climate development in Western Europe. The Lateglacial sediment record of Lake Mondsee (Upper Austria) was investigated in order to study the regional climate development and the environmental response to rapid climatic fluctuations. While the temperature rise and environmental response at the onset of the Holocene took place quasi-synchronously, major leads and lags in proxy responses characterize the onset of the Lateglacial Interstadial. In particular, the spread of coniferous woodlands and the reduction of detrital flux lagged the initial Lateglacial warming by ca. 500-750 years. Major cooling at the onset of the Younger Dryas took place synchronously with a change in vegetation, while the increase of detrital matter flux was delayed by about 150-300 years. Complex proxy responses are also detected for short-term Lateglacial climatic fluctuations. In summary, periods of abrupt climatic changes are characterized by complex and temporally variable proxy responses, mainly controlled by ecosystem inertia and the environmental preconditions. A second study on the Lake Mondsee sediment record focused on two small-scale climate deteriorations around 8200 and 9100 cal. a BP, which have been triggered by freshwater discharges to the North Atlantic, causing a shutdown of the Atlantic meridional overturning circulation (MOC). Combining microscopic varve counting and AMS 14C dating yielded a precise duration estimate (ca. 150 years) and absolute dating of the 8.2 ka cold event, both being in good agreement with results from other palaeoclimate records. Moreover, a sudden temperature overshoot after the 8.2 ka cold event was identified, also seen in other proxy records around the North Atlantic. This was most likely caused by enhanced resumption of the MOC, which also initiated substantial shifts of oceanic and atmospheric front systems. Although there is also evidence from other proxy records for pronounced recovery of the MOC and atmospheric circulation changes after the 9.1 ka cold event, no temperature overshoot is seen in the Lake Mondsee record, indicating the complex behaviour of the global climate system. The Holocene sediment record of Lake Iseo (northern Italy) was studied to shed light on regional earthquake activity and the influence of climate variability and anthropogenic impact on catchment erosion and detrital flux into the lake. Frequent small-scale detrital layers within the sediments reflect allochthonous sediment supply by extreme surface runoff events. During the early to mid-Holocene, increased detrital flux coincides with periods of cold and wet climate conditions, thus apparently being mainly controlled by climate variability. In contrast, intervals of high detrital flux during the late Holocene partly also correlate with phases of increased human impact, reflecting the complex influences on catchment erosion processes. Five large-scale event layers within the sediments, which are composed of mass-wasting deposits and turbidites, are supposed to have been triggered by strong local earthquakes. While the uppermost of these event layers is assigned to a documented adjacent earthquake in AD 1222, the four other layers are supposed to be related to previously undocumented prehistorical earthquakes.}, language = {en} } @article{ZhangZhangFengetal.2012, author = {Zhang, Chengjun and Zhang, Wanyi and Feng, Zhaodong and Mischke, Steffen and Gao, Xiang and Gao, Dou and Sun, Feifei}, title = {Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {323}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.01.032}, pages = {75 -- 86}, year = {2012}, abstract = {A multi-proxy study including analyses of delta C-13(org) for the lake sediment core GN-02 and grain size, TOC. CaCO3 content, delta C-13(carb) and delta O-18(carb) of bulk carbonate, and the mineralogy of the parallel core GN-04 from Gun Nuur was performed to reconstruct the Holocene hydrology and climate on the northern Mongolian Plateau. The chronology was established using 40 C-14 dates of bulk organic matter in addition to nine previously published radiocarbon dates for core GN-02, and further five C-14 dates for the new core GN-04. A lake reservoir effect of 1060 C-14 years was determined as the intercept of the high-resolution GN-02 age-depth model at the modern sediment surface. The size of the reservoir effect is supported by the age of the core-top sample (1200 +/- 40 C-14 years) and the determined difference between a wood-derived radiocarbon age from the GN-02 core base and the age-model inferred age for bulk organic matter at the same stratigraphic level (1000 C-14 years). Low lake level and prevailing aeolian sediment deposition at Gun Nuur under dry conditions were recorded during the earliest Holocene (> 10,800-10,300 cal a BP). Gun Nuur expanded under significantly wetter conditions between 10,300 and 7000 cal a BP. Unstable climate conditions existed in the mid Holocene (7000-2500 cal a BP) and three periods of low lake-levels and significantly drier conditions were recorded between 7000-5700, 4100-3600 and 3000-2500 cal a BP. Intermediate lake levels were inferred for the intervening periods. Around 2500 cal a BP, the climate change and wetter conditions were established again. As a consequence, the lake level of Gun Nuur rose again due to higher effective moisture and the relatively wet present conditions were achieved ca. 1600 cal a BP. Our results suggest that the initial Holocene climate change on the northern Mongolian Plateau was not accompanied by a rapid increase in precipitation as on the Tibetan Plateau. The establishment of wetter conditions in northern Mongolia lagged behind the early Holocene moisture increase on the Tibetan Plateau by ca. 1000 years. Subsiding dry air in the north of the Tibetan Plateau resulted from the strengthened summer monsoon on the Tibetan Plateau during the period of maximum summer insolation and probably inhibited a significant precipitation increase in Mongolia. The significant moisture increase in the Gun Nuur region at ca. 10.3 cal ka BP is probably not related to the northward shift of the present summer monsoon boundary or the moisture delivery from the northern Atlantic through the westerlies. Instead, water from melting snow, ice and frozen ground and the generation of precipitation from the local recycling of moisture are discussed as possible moisture source for the early onset of wetter conditions on the Mongolian Plateau.}, language = {en} } @article{AnoopPrasadBasavaiahetal.2012, author = {Anoop, A. and Prasad, S. and Basavaiah, Nathani and Brauer, Achim and Shahzad, F. and Deenadayalan, K.}, title = {Tectonic versus climate influence on landscape evolution: A case study from the upper Spiti valley, NW Himalaya}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {145}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2011.10.028}, pages = {32 -- 44}, year = {2012}, abstract = {We have undertaken structural, geomorphological, and morphometric analyses to investigate the role of tectonism and climate in the landscape evolution in the upper Spiti valley, NW Himalayas. Geomorphometric analyses coupled with field investigations reveal active tectonic deformation in the Spiti region. The calculated geomorphic indices (steepness, concavity and Hack) demonstrate uplift/subsidence along the Kaurik-Chango fault, whereas transverse topographic index (T-index) reveals basin tilting associated with active faulting near Hansa and Lingti valley. Investigation of well-dated Mane palaeolake sediments also provides evidence of regional tectonic instability. Four episodes (ca. 7.8, 7.4, 6.5 and 6.1 cal ka) of neotectonic activity have been identified during the period of the lake's existence. We have also compiled data on the regional climate variability and compared it with the age of the Mane palaeo-landslide. Our results indicate that the landslide occurred towards the end of the early Holocene intensified monsoon phase and is located near an active fault. Our data on regional tectonic instability and the coincidences of modern and palaeo-landslides with zones of active deformation suggest that tectonism is an important factor governing landscape stability in the Spiti region.}, language = {en} } @article{AichnerHerzschuhWilkesetal.2012, author = {Aichner, Bernhard and Herzschuh, Ulrike and Wilkes, Heinz and Schulz, Hans-Martin and Wang, Yongbo and Plessen, Birgit and Mischke, Steffen and Diekmann, Bernhard and Zhang, Chengjun}, title = {Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {313}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2011.10.015}, pages = {140 -- 149}, year = {2012}, abstract = {Organic geochemical proxy data from surface sediment samples and a sediment core from Lake Donggi Cona were used to infer environmental changes on the northeastern Tibetan Plateau spanning the last 18.4 kyr. Long-chain n-alkanes dominate the aliphatic hydrocarbon fraction of the sediment extract from most surface sediment samples and the sediment core. Unsaturated mid-chain n-alkanes (nC(23:1) and nC(25:1)) have high abundances in some samples, especially in core samples from the late glacial and early Holocene. TOC contents, organic biomarker and non-pollen-palynomorph concentrations and results from organic petrologic analysis on selected samples suggest three major episodes in the history of Lake Donggi Cona. Before ca. 12.6 cal ka BP samples contain low amounts of organic matter due to cold and arid conditions during the late glacial. After 12.6 cal ka BP, relatively high contents of TOC and concentrations of Botryococcus fossils, as well as enhanced concentrations of mid-chain n-alkanes and n-alkenes suggest a higher primary and macrophyte productivity than at present This is supported by high contents of palynomorphs derived from higher plants and algae and was possibly triggered by a decrease of salinity and amelioration of climate during the early Holocene. Since 6.8 cal ka BP Lake Donggi Cona has been an oligotrophic freshwater lake. Proxy data suggest that variations in insolation drive ecological changes in the lake, with increased aquatic productivity during the early Holocene summer insolation maximum. Short-term drops of TOC contents or biomarker concentrations (at 9.9 cal ka BP, after 8.0 and between 3.5 and 1.7 cal ka BP) can possibly be related to relatively cool and dry episodes reported from other sites on the north-eastern Tibetan Plateau, which are hypothesized to occur in phase with Northern Hemisphere cooling events.}, language = {en} } @article{GarcinMelnickStreckeretal.2012, author = {Garcin, Yannick and Melnick, Daniel and Strecker, Manfred and Olago, Daniel and Tiercelin, Jean-Jacques}, title = {East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift}, series = {Earth \& planetary science letters}, volume = {331}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.03.016}, pages = {322 -- 334}, year = {2012}, abstract = {The 'wet' early to mid-Holocene of tropical Africa, with its enhanced monsoon, ended with an abrupt shift toward drier conditions and was ultimately replaced by a drier climate that has persisted until the present day. The forcing mechanisms, the timing, and the spatial extent of this major climatic transition are not well understood and remain the subject of ongoing research. We have used a detailed palaeo-shoreline record from Lake Turkana (Kenya) to decipher and characterise this marked climatic transition in East Africa. We present a high-precision survey of well-preserved palaeo-shorelines, new radiocarbon ages from shoreline deposits, and oxygen-isotope measurements on freshwater mollusk shells to elucidate the Holocene moisture history from former lake water-levels in this climatically sensitive region. In combination with previously published data our study shows that during the early Holocene the water-level in Lake Turkana was high and the lake overflowed temporarily into the White Nile drainage system. During the mid-Holocene (similar to 5270 +/- 300 cal. yr BP), however, the lake water-level fell by similar to 50 m, coeval with major episodes of aridity on the African continent. A comparison between palaeo-hydrological and archaeological data from the Turkana Basin suggests that the mid-Holocene climatic transition was associated with fundamental changes in prehistoric cultures, highlighting the significance of natural climate variability and associated periods of protracted drought as major environmental stress factors affecting human occupation in the East African Rift System. (}, language = {en} } @article{PestryakovaHerzschuhWetterichetal.2012, author = {Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike and Wetterich, Sebastian and Ulrich, Mathias}, title = {Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {51}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2012.06.020}, pages = {56 -- 70}, year = {2012}, abstract = {Thermokarst lakes are assumed to develop cyclically, driven by processes that are triggered by climate and maintained by internal feedbacks that may trigger lake drainage. However, the duration of these cycles remains uncertain, as well as whether or not they affect the stabilization of lake ecosystems in permafrost regions over millennial time scales. Our research has combined investigations into modern lake-to-lake variability with a study of the long-term development of individual lakes. We have investigated the physico-chemical and diatom compositions of a set of 101 lakes with a variety of different origins in central Yakutia (Eastern Siberia), including thermokarst lakes, fluvial-erosion thermokarst lakes, fluvial-erosion lakes, and dune lakes. We found a significant relationship between lake genesis and the present-day variability in environmental and diatom characteristics, as revealed by multi-response permutation procedures, indicator species analyses, and redundancy analyses. Environmental parameters also exhibit a significant correlation with variations in the diatom data, for which they may have been to a substantial extent responsible. Mg and SO4 concentrations, together with pH and water depth, were identified as the most important parameters, influencing the variations in the diatom data almost as much as the entire environmental parameter set. We were therefore able to establish a robust Mg-diatom transfer function, which was then applied to three Holocene lake records. From these reconstructions, together with a general interpretation of the diatom record (including, e.g., the ratio between benthic/epiphytic and planktonic taxa), we have been able to infer that all three of these lakes show (1) a continuous record with no desiccation events, (2) high lake water-levels during the early Holocene, (3) centennial to millennial scale variability, and (4) high levels of variability during the early Holocene but rather stable conditions during the late Holocene (a feature that is also known from other sites around the world). We therefore concluded that the development of these three lakes was mainly driven directly by the climate, rather than by thaw lake cycling.}, language = {en} } @article{DallmeyerClaussenWangetal.2013, author = {Dallmeyer, A. and Claussen, Martin and Wang, Y. and Herzschuh, Ulrike}, title = {Spatial variability of Holocene changes in the annual precipitation pattern a model-data synthesis for the Asian monsoon region}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {40}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {11-12}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-012-1550-6}, pages = {2919 -- 2936}, year = {2013}, abstract = {This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.}, language = {en} } @article{NazarovadeHoogHoffetal.2013, author = {Nazarova, Larisa B. and de Hoog, Verena and Hoff, Ulrike and Dirksen, Oleg and Diekmann, Bernhard}, title = {Late Holocene climate and environmental changes in Kamchatka inferred from the subfossil chironomid record}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {67}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.01.018}, pages = {81 -- 92}, year = {2013}, abstract = {This study presents a reconstruction of the Late Holocene climate in Kamchatka based on chironomid remains from a 332 cm long composite sediment core recovered from Dvuyurtochnoe Lake (Two-Yurts Lake, TYL) in central Kamchatka. The oldest recovered sediments date to about 4500 cal years BP. Chironomid head capsules from TYL reflect a rich and diverse fauna. An unknown morphotype of Tanytarsini, Tanytarsus type klein, was found in the lake sediments. Our analysis reveals four chironomid assemblage zones reflecting four different climatic periods in the Late Holocene. Between 4500 and 4000 cal years BP, the chironomid composition indicates a high lake level, well-oxygenated lake water conditions and close to modern temperatures (similar to 13 degrees C). From 4000 to 1000 cal years BP, two consecutive warm intervals were recorded, with the highest reconstructed temperature reaching 16.8 degrees C between 3700 and 2800 cal years BP. Cooling trend, started around 1100 cal years BP led to low temperatures during the last stage of the Holocene. Comparison with other regional studies has shown that termination of cooling at the beginning of late Holocene is relatively synchronous in central Kamchatka, South Kurile, Bering and Japanese Islands and take place around 3700 cal years BP. From ca 3700 cal years BP to the last millennium, a newly strengthened climate continentality accompanied by general warming trend with minor cool excursions led to apparent spatial heterogeneity of climatic patterns in the region. Some timing differences in climatic changes reconstructed from chironomid record of TYL sediments and late Holocene events reconstructed from other sites and other proxies might be linked to differences in local forcing mechanisms or caused by the different degree of dating precision, the different temporal resolution, and the different sensitive responses of climate proxies to the climate variations. Further high-resolution stratigraphic studies in this region are needed to understand the spatially complex pattern of climate change in Holocene in Kamchatka and the surrounding region.}, language = {en} } @article{HuangOberhaenslivonSuchodoletzetal.2014, author = {Huang, Xiangtong and Oberhaensli, Hedi and von Suchodoletz, Hans and Prasad, Sushma and Sorrel, Philippe and Plessen, Birgit and Mathis, Marie and Usubaliev, Raskul}, title = {Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {103}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.09.012}, pages = {134 -- 152}, year = {2014}, abstract = {The hydrology of western Central Asia is highly sensitive to climatic perturbations. In order to understand its long-term variability and to infer linkages between precipitation and atmospheric and oceanic systems, we conducted a thorough sedimentary and geochemical study on a composite core retrieved in lake Son Kul (central Kyrgyzstan). A multi-proxy approach was conducted on lake sediments based on grain size analyses, magnetic susceptibility, total organic carbon (TOC), total nitrogen (TN) and carbon and oxygen isotope analyses on bulk and biogenic materials (ostracoda and molluscs shells) at a resolution equivalent to ca 40 years, aiming to characterise the sequence of palaeolimnological changes in Son Kul. As indicated by delta O-18 record of bulk carbonates, mainly consisting of aragonite, the Holocene hydrological balance was negative during most of time, suggesting an excess of evaporation (E) over precipitation (P). Limnological conditions fluctuated rapidly before 5000 cal yr BP indicating significant changes in regional hydrology and climate. In particular, the long-term negative hydrological balance was impeded by several short stages with marked increase of precipitation, lasting several decades to a few centuries (e.g., 8300-8200, 6900-6700, 6300-6100, 5500-5400, 5300-5200 and 3100 -3000 cal yr BP). Precipitation changes as inferred from 8180 data are also documented by increased minerogenic detritus and higher TOC. We propose that the seasonal pattern of precipitation varied transiently in western Central Asia during the Holocene, although evaporation changes may also account for the rapid changes observed in delta O-18 data. When the annual water balance was less critical (P <= E), the excess of water might be ascribed to increased precipitation during cold seasons mainly because winter precipitation has more negative delta O-18 than its summer equivalent. Conversely, when the annual water balance is negative (P E), the moisture was mainly delivered during the warm season, as between 5000 and 2000 cal yr BP. Our results thus imply that moisture sources could have changed as well during the Holocene. Moisture was delivered as today mainly during summer from the extended Caspian-Aral Basin and eastern Mediterranean, although Arctic and even North Atlantic seas might be important moisture sources when seasonal precipitation was dominated by winter precipitation. We hypothesise that warming Arctic and North Atlantic seas were important for the North Hemisphere circulation during the cold season. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PrasadAnoopRiedeletal.2014, author = {Prasad, Sushma and Anoop, A. and Riedel, N. and Sarkar, Saswati and Menzel, P. and Basavaiah, Nathani and Krishnan, R. and Fuller, D. and Plessen, Birgit and Gaye, B. and Roehl, U. and Wilkes, H. and Sachse, Dirk and Sawant, R. and Wiesner, M. G. and Stebich, M.}, title = {Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India}, series = {Earth \& planetary science letters}, volume = {391}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2014.01.043}, pages = {171 -- 182}, year = {2014}, abstract = {Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of-intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Nino-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.}, language = {en} } @article{HerzschuhBorkowskiScheweetal.2014, author = {Herzschuh, Ulrike and Borkowski, Janett and Schewe, Jacob and Mischke, Steffen and Tian, Fang}, title = {Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {402}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.02.022}, pages = {44 -- 54}, year = {2014}, abstract = {(Paleo-)climatologists are challenged to identify mechanisms that cause the observed abrupt Holocene monsoon events despite the fact that monsoonal circulation is assumed to be driven by gradual insolation changes. Here we provide proxy and model evidence to show that moisture-advection feedback can lead to a non-linear relationship between sea-surface and continental temperatures and monsoonal precipitation. A pollen record from Lake Ximencuo (Nianbaoyeze Mountains) indicates that vegetation from the eastern margin of the Tibetan Plateau was characterized by alpine deserts and glacial flora after the Last Glacial Maximum (LGM) (21-15.5 cal kyr BP), by alpine meadows during the Late Glacial (15.5-10.4 cal kyr BP) and second half of the Holocene (5.0 cal kyr BP to present) and by mixed forests during the first half of the Holocene (10.4-5.0 cal kyr BP). The application of pollen-based transfer functions yields an abrupt temperature increase at 10.4 cal kyr BP and a decrease at 5.0 cal kyr BP of about 3 degrees C. By applying endmember modeling to grain-size data from the same sediment core we infer that frequent fluvial events (probably originating from high-magnitude precipitation events) were more common in the early and mid Holocene. We assign the inferred exceptional strong monsoonal circulation to the initiation of moisture-advection feedback, a result supported by a simple model that reproduces this feedback pattern over the same time period. (C) 2014 Published by Elsevier B.V.}, language = {en} } @article{MarquerGaillardSugitaetal.2014, author = {Marquer, Laurent and Gaillard, Marie-Jose and Sugita, Shinya and Trondman, Anna-Kari and Mazier, Florence and Nielsen, Anne Birgitte and Fyfe, Ralph M. and Odgaard, Bent Vad and Alenius, Teija and Birks, H. John B. and Bjune, Anne E. and Christiansen, J{\"o}rg and Dodson, John and Edwards, Kevin J. and Giesecke, Thomas and Herzschuh, Ulrike and Kangur, Mihkel and Lorenz, Sebastian and Poska, Anneli and Schult, Manuela and Seppa, Heikki}, title = {Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {90}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.02.013}, pages = {199 -- 216}, year = {2014}, abstract = {We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human distribution on Holocene regional, vegetation, feature that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past.}, language = {en} } @article{LauterbachWittPlessenetal.2014, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614534741}, pages = {970 -- 984}, year = {2014}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @article{NiCaoJeltschetal.2014, author = {Ni, Jian and Cao, Xianyong and Jeltsch, Florian and Herzschuh, Ulrike}, title = {Biome distribution over the last 22,000 yr in China}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {409}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.04.023}, pages = {33 -- 47}, year = {2014}, abstract = {Patterns of past vegetation changes over time and space can help facilitate better understanding of the interactions among climate, ecosystem, and human impact. Biome changes in China over the last 22,000 yr (calibrated radiocarbon date, a BP) were numerically reconstructed by using a standard approach of pollen-plant functional type-biome assignment (biomization). The biomization procedure involves pollen data from 2434 surface sites and 228 fossil sites with a high quality of pollen count and C-14 dating, 51 natural and three anthropogenic plant functional types (PFTs), as well as 19 natural and one anthropogenic biome. Surface pollen-based reconstruction of modern natural biome patterns is in good agreement (74.4\%) with actual vegetation distribution in China. However, modem large-scale anthropogenic biome reconstruction has not been successful based on the current setup of three anthropogenic PFTs (plantation, secondary, and disturbed PFT) because of the limitation of non-species level pollen identification and the difficulty in the clear assignment of disturbed PFTs. The non-anthropogenic biome distributions of 44 time slices at 500-year intervals show large-scale discrepant and changed vegetation patterns from the last glacial maximum (LGM) to the Holocene throughout China. From 22 ka BP to 19 ka BP, temperate grassland, xerophytic shrubland, and desert dominated northern China, whereas cold or cool forests flourished in central China. Warm-temperate evergreen forests were restricted to far southern China, and tropical forests were absent During 18.5 ka BP to 12 ka BP, cold, cool, and dry biomes extended to some parts of northern, westem, and eastern China. Warm-temperate evergreen and mixed forests gradually expanded to occupy the whole of southern China. A slight northward shift of forest biomes occurred from 15 ka BP to 12 lea BP. During 11.5 ka BP to 9 ka BP, temperate grassland and shrubland gradually stretched to northern and western China. Cold and cool forests widely expanded into northern and central China, as well as in the northern margin of South China along with temperate deciduous forest. Since the early mid-Holocene (approximately 8.5 ka BP to 5.5 ka BP), all forest biomes shifted northward at the expense of herbaceous and shrubby biomes. Simultaneously, cold and cool forest biomes occupied the marginal areas of the Tibetan Plateau and the high mountains in western China. During the middle to late Holocene, from 5 ka to the present, temperate grassland and xerophytic shrubland expanded to the south and east, whereas temperate deciduous forests slightly shifted southward. After 3 lea BP, forest biomes were absent in western China and on the Tibetan plateau surface. Dramatic biome shifts from the LGM to the Holocene were observed in the forest-grassland ecotone and transitional zones between temperate and subtropical climates, between subtropical and tropical regions, and in the mountainous margins of the eastern Tibetan Plateau. Evidence showed more human disturbances during the late Holocene. More pollen records and historical documents are therefore further needed to understand fully the human disturbance-induced large-scale forest changes. In addition, more classifications of anthropogenic biome or land cover, more distinct assignment of pollen taxa to anthropogenic PFTs, and more effective numerical and/or mechanistic techniques in building large-scale human disturbances are required. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{CaoHerzschuhNietal.2014, author = {Cao, Xianyong and Herzschuh, Ulrike and Ni, Jian and Zhao, Yan and B{\"o}hmer, Thomas}, title = {Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years}, series = {The Holocene}, volume = {25}, journal = {The Holocene}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404176}, pages = {13}, year = {2014}, abstract = {This study investigates the spatial and temporal distributions of 14 key arboreal taxa and their driving forces during the last 22,000 calendar years before ad 1950 (kyr BP) using a taxonomically harmonized and temporally standardized fossil pollen dataset with a 500-year resolution from the eastern part of continental Asia. Logistic regression was used to estimate pollen abundance thresholds for vegetation occurrence (presence or dominance), based on modern pollen data and present ranges of 14 taxa in China. Our investigation reveals marked changes in spatial and temporal distributions of the major arboreal taxa. The thermophilous (Castanea, Castanopsis, Cyclobalanopsis, Fagus, Pterocarya) and eurythermal (Juglans, Quercus, Tilia, Ulmus) broadleaved tree taxa were restricted to the current tropical or subtropical areas of China during the Last Glacial Maximum (LGM) and spread northward since c. 14.5 kyr BP. Betula and conifer taxa (Abies, Picea, Pinus), in contrast, retained a wider distribution during the LGM and showed no distinct expansion direction during the Late Glacial. Since the late mid-Holocene, the abundance but not the spatial extent of most trees decreased. The changes in spatial and temporal distributions for the 14 taxa are a reflection of climate changes, in particular monsoonal moisture, and, in the late Holocene, human impact. The post-LGM expansion patterns in eastern continental China seem to be different from those reported for Europe and North America, for example, the westward spread for eurythermal broadleaved taxa.}, language = {en} }