@article{CoutinhoKlauschiesGaedke2016, author = {Coutinho, Renato Mendes and Klauschies, Toni and Gaedke, Ursula}, title = {Bimodal trait distributions with large variances question the reliability of trait-based aggregate models}, series = {Theoretical ecology}, volume = {9}, journal = {Theoretical ecology}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-1738}, doi = {10.1007/s12080-016-0297-9}, pages = {389 -- 408}, year = {2016}, abstract = {Functionally diverse communities can adjust their species composition to altered environmental conditions, which may influence food web dynamics. Trait-based aggregate models cope with this complexity by ignoring details about species identities and focusing on their functional characteristics (traits). They describe the temporal changes of the aggregate properties of entire communities, including their total biomasses, mean trait values, and trait variances. The applicability of aggregate models depends on the validity of their underlying assumptions that trait distributions are normal and exhibit small variances. We investigated to what extent this can be expected to work by comparing an innovative model that accounts for the full trait distributions of predator and prey communities to a corresponding aggregate model. We used a food web structure with well-established trade-offs among traits promoting mutual adjustments between prey edibility and predator selectivity in response to selection. We altered the shape of the trade-offs to compare the outcome of the two models under different selection regimes, leading to trait distributions increasingly deviating from normality. Their biomass and trait dynamics agreed very well for stabilizing selection and reasonably well for directional selection, under which different trait values are favored at different times. However, for disruptive selection, the results of the aggregate model strongly deviated from the full trait distribution model that showed bimodal trait distributions with large variances. Hence, the outcome of aggregate models is reliable under ideal conditions but has to be questioned when confronted with more complex selection regimes and trait distributions, which are commonly observed in nature.}, language = {en} } @article{GaedkeRuhenstrothBauerWiegandetal.2010, author = {Gaedke, Ursula and Ruhenstroth-Bauer, Miriam and Wiegand, Ina and Tirok, Katrin and Aberle-Malzahn, Nicole and Breithaupt, Petra and Lengfellner, Kathrin and Wohlers, Julia and Sommer, Ulrich}, title = {Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics}, issn = {1354-1013}, doi = {10.1111/j.1365-2486.2009.02009.x}, year = {2010}, abstract = {To improve our mechanistic understanding and predictive capacities with respect to climate change effects on the spring phytoplankton bloom in temperate marine systems, we used a process-driven dynamical model to disentangle the impact of potentially relevant factors which are often correlated in the field. The model was based on comprehensive indoor mesocosm experiments run at four temperature and three light regimes. It was driven by time-series of water temperature and irradiance, considered edible and less edible phytoplankton separately, and accounted for density- dependent grazing losses. It successfully reproduced the observed dynamics of well edible phytoplankton in the different temperature and light treatments. Four major factors influenced spring phytoplankton dynamics: temperature, light (cloudiness), grazing, and the success of overwintering phyto- and zooplankton providing the starting biomasses for spring growth. Our study predicts that increasing cloudiness as anticipated for warmer winters for the Baltic Sea region will retard phytoplankton net growth and reduce peak heights. Light had a strong direct effect in contrast to temperature. However, edible phytoplankton was indirectly strongly temperature-sensitive via grazing which was already important in early spring at moderately high algal biomasses and counter-intuitively provoked lower and later algal peaks at higher temperatures. Initial phyto- and zooplankton composition and biomass also had a strong effect on spring algal dynamics indicating a memory effect via the broadly under-sampled overwintering plankton community. Unexpectedly, increased initial phytoplankton biomass did not necessarily lead to earlier or higher spring blooms since the effect was counteracted by subsequently enhanced grazing. Increasing temperature will likely exhibit complex indirect effects via changes in overwintering phytoplankton and grazer biomasses and current grazing pressure. Additionally, effects on the phytoplankton composition due to the species-specific susceptibility to grazing are expected. Hence, we need to consider not only direct but also indirect effects, e.g. biotic interactions, when addressing climate change impacts.}, language = {en} } @article{MooijTrolleJeppesenetal.2010, author = {Mooij, Wolf M. and Trolle, Dennis and Jeppesen, Erik and Arhonditsis, George B. and Belolipetsky, Pavel V. and Chitamwebwa, Deonatus B. R. and Degermendzhy, Andrey G. and DeAngelis, Donald L. and Domis, Lisette Nicole de Senerpont and Downing, Andrea S. and Elliott, J. Alex and Fragoso Jr, Carlos Ruberto and Gaedke, Ursula and Genova, Svetlana N. and Gulati, Ramesh D. and H{\aa}kanson, Lars and Hamilton, David P. and Hipsey, Matthew R. and 't Hoen, Jochem and H{\"u}lsmann, Stephan and Los, F. Hans and Makler-Pick, Vardit and Petzoldt, Thomas and Prokopkin, Igor G. and Rinke, Karsten and Schep, Sebastiaan A. and Tominaga, Koji and Van Dam, Anne A. and Van Nes, Egbert H. and Wells, Scott A. and Janse, Jan H.}, title = {Challenges and opportunities for integrating lake ecosystem modelling approaches}, series = {Aquatic ecology}, volume = {44}, journal = {Aquatic ecology}, publisher = {Springer Science + Business Media B.V.}, address = {Dordrecht}, issn = {1573-5125}, doi = {10.1007/s10452-010-9339-3}, pages = {633 -- 667}, year = {2010}, abstract = {A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.}, language = {en} } @article{KlauschiesBauerAberleMalzahnetal.2012, author = {Klauschies, Toni and Bauer, Barbara and Aberle-Malzahn, Nicole and Sommer, Ulrich and Gaedke, Ursula}, title = {Climate change effects on phytoplankton depend on cell size and food web structure}, series = {Marine biology : international journal on life in oceans and coastal waters}, volume = {159}, journal = {Marine biology : international journal on life in oceans and coastal waters}, number = {11}, publisher = {Springer}, address = {New York}, issn = {0025-3162}, doi = {10.1007/s00227-012-1904-y}, pages = {2455 -- 2478}, year = {2012}, abstract = {We investigated the effects of warming on a natural phytoplankton community from the Baltic Sea, based on six mesocosm experiments conducted 2005-2009. We focused on differences in the dynamics of three phytoplankton size groups which are grazed to a variable extent by different zooplankton groups. While small-sized algae were mostly grazer-controlled, light and nutrient availability largely determined the growth of medium- and large-sized algae. Thus, the latter groups dominated at increased light levels. Warming increased mesozooplankton grazing on medium-sized algae, reducing their biomass. The biomass of small-sized algae was not affected by temperature, probably due to an interplay between indirect effects spreading through the food web. Thus, under the higher temperature and lower light levels anticipated for the next decades in the southern Baltic Sea, a higher share of smaller phytoplankton is expected. We conclude that considering the size structure of the phytoplankton community strongly improves the reliability of projections of climate change effects.}, language = {en} } @article{WeithoffRochaGaedke2015, author = {Weithoff, Guntram and Rocha, Marcia R. and Gaedke, Ursula}, title = {Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure}, series = {Freshwater biology}, volume = {60}, journal = {Freshwater biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/fwb.12527}, pages = {758 -- 767}, year = {2015}, abstract = {In most biodiversity studies, taxonomic diversity is the measure for the multiplicity of species and is often considered to represent functional diversity. However, trends in taxonomic diversity and functional diversity may differ, for example, when many functionally similar but taxonomically different species co-occur in a community. The differences between these diversity measures are of particular interest in diversity research for understanding diversity patterns and their underlying mechanisms. We analysed a temporally highly resolved 20-year time series of lake phytoplankton to determine whether taxonomic diversity and functional diversity exhibit similar or contrasting seasonal patterns. We also calculated the functional mean of the community in n-dimensional trait space for each sampling day to gain further insights into the seasonal dynamics of the functional properties of the community. We found an overall weak positive relationship between taxonomic diversity and functional diversity with a distinct seasonal pattern. The two diversity measures showed synchronous behaviour from early spring to mid-summer and a more complex and diverging relationship from autumn to late winter. The functional mean of the community exhibited a recurrent annual pattern with the most prominent changes before and after the clear-water phase. From late autumn to winter, the functional mean of the community and functional diversity were relatively constant while taxonomic diversity declined, suggesting competitive exclusion during this period. A further decline in taxonomic diversity concomitant with increasing functional diversity in late winter to early spring is seen as a result of niche diversification together with competitive exclusion. Under these conditions, several different sets of traits are suitable to thrive, but within one set of functional traits only one, or very few, morphotypes can persist. Taxonomic diversity alone is a weak descriptor of trait diversity in phytoplankton. However, the combined analysis of taxonomic diversity and functional diversity, along with the functional mean of the community, allows for deeper insights into temporal patterns of community assembly and niche diversification.}, language = {en} } @article{HoulahanCurrieCottenieetal.2007, author = {Houlahan, Jeff E. and Currie, David J. and Cottenie, Karl and Cumming, Graeme S. and Ernest, S. K. Morgan and Findlay, C. Scott and Fuhlendorf, Samuel D. and Gaedke, Ursula and Legendre, Pierre and Magnuson, John J. and McArdle, Brian H. and Muldavin, Esteban H. and Noble, David and Russell, Robert and Stevens, Richard D. and Willis, Trevor J. and Woiwod, Ian P. and Wondzell, Steve M.}, title = {Compensatory dynamics are rare in natural ecological communities}, issn = {0027-8424}, doi = {10.1073/pnas.0603798104}, year = {2007}, abstract = {In population ecology, there has been a fundamental controversy about the relative importance of competition- driven (density-dependent) population regulation vs. abiotic influences such as temperature and precipitation. The same issue arises at the community level; are population sizes driven primarily by changes in the abundances of cooccurring competitors (i.e., compensatory dynamics), or do most species have a common response to environmental factors? Competitive interactions have had a central place in ecological theory, dating back to Gleason, Volterra, Hutchison and MacArthur, and, more recently, Hubbell's influential unified neutral theory of biodiversity and biogeography. If competitive interactions are important in driving year-to-year fluctuations in abundance, then changes in the abundance of one species should generally be accompanied by compensatory changes in the abundances of others. Thus, one necessary consequence of strong compensatory forces is that, on average, species within communities will covary negatively. Here we use measures of community covariance to assess the prevalence of negative covariance in 41 natural communities comprising different taxa at a range of spatial scales. We found that species in natural communities tended to covary positively rather than negatively, the opposite of what would be expected if compensatory dynamics were important. These findings suggest that abiotic factors such as temperature and precipitation are more important than competitive interactions in driving year-to-year fluctuations in species abundance within communities.}, language = {en} } @article{CleggGaedkeBoehreretal.2012, author = {Clegg, Mark R. and Gaedke, Ursula and B{\"o}hrer, Bertram and Spijkerman, Elly}, title = {Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum}, series = {Oecologia}, volume = {169}, journal = {Oecologia}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-011-2225-4}, pages = {609 -- 622}, year = {2012}, abstract = {In the deep, cooler layers of clear, nutrient-poor, stratified water bodies, phytoplankton often accumulate to form a thin band or "deep chlorophyll maximum" (DCM) of ecological importance. Under such conditions, these photosynthetic microorganisms may be close to their physiological compensation points and to the boundaries of their ecological tolerance. To grow and survive any resulting energy limitation, DCM species are thought to exhibit highly specialised or flexible acclimation strategies. In this study, we investigated several of the adaptable ecophysiological strategies potentially employed by one such species, Chlamydomonas acidophila: a motile, unicellular, phytoplanktonic flagellate that often dominates the DCM in stratified, acidic lakes. Physiological and behavioural responses were measured in laboratory experiments and were subsequently related to field observations. Results showed moderate light compensation points for photosynthesis and growth at 22A degrees C, relatively low maintenance costs, a behavioural preference for low to moderate light, and a decreased compensation point for photosynthesis at 8A degrees C. Even though this flagellated alga exhibited a physiologically mediated diel vertical migration in the field, migrating upwards slightly during the day, the ambient light reaching the DCM was below compensation points, and so calculations of daily net photosynthetic gain showed that survival by purely autotrophic means was not possible. Results suggested that strategies such as low-light acclimation, small-scale directed movements towards light, a capacity for mixotrophic growth, acclimation to low temperature, in situ exposure to low O-2, high CO2 and high P concentrations, and an avoidance of predation, could combine to help overcome this energetic dilemma and explain the occurrence of the DCM. Therefore, corroborating the deceptive ecophysiological complexity of this and similar organisms, only a suite of complementary strategies can facilitate the survival of C. acidophila in this DCM.}, language = {en} } @article{MassieRyabovBlasiusetal.2013, author = {Massie, Thomas Michael and Ryabov, Alexei and Blasius, Bernd and Weithoff, Guntram and Gaedke, Ursula}, title = {Complex transient dynamics of stage-structured populations in response to environmental changes}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {182}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {1}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/670590}, pages = {103 -- 119}, year = {2013}, abstract = {Stage structures of populations can have a profound influence on their dynamics. However, not much is known about the transient dynamics that follow a disturbance in such systems. Here we combined chemostat experiments with dynamical modeling to study the response of the phytoplankton species Chlorella vulgaris to press perturbations. From an initially stable steady state, we altered either the concentration or dilution rate of a growth-limiting resource. This disturbance induced a complex transient response-characterized by the possible onset of oscillations-before population numbers relaxed to a new steady state. Thus, cell numbers could initially change in the opposite direction of the long-term change. We present quantitative indexes to characterize the transients and to show that the dynamic response is dependent on the degree of synchronization among life stages, which itself depends on the state of the population before perturbation. That is, we show how identical future steady states can be approached via different transients depending on the initial population structure. Our experimental results are supported by a size-structured model that accounts for interplay between cell-cycle and population-level processes and that includes resource-dependent variability in cell size. Our results should be relevant to other populations with a stage structure including organisms of higher order.}, language = {en} } @article{HiltWankeScharnweberetal.2015, author = {Hilt, Sabine and Wanke, Thomas and Scharnweber, Inga Kristin and Brauns, Mario and Syvaranta, Jari and Brothers, Soren M. and Gaedke, Ursula and K{\"o}hler, Jan and Lischke, Betty and Mehner, Thomas}, title = {Contrasting response of two shallow eutrophic cold temperate lakes to a partial winterkill of fish}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {749}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-014-2143-7}, pages = {31 -- 42}, year = {2015}, abstract = {Food-web effects of winterkill are difficult to predict as the enhanced mortality of planktivorous fish may be counterbalanced by an even higher mortality of piscivores. We hypothesised that a winterkill in a clear and a turbid shallow lake would equalise their fish community composition, but seasonal plankton successions would differ between lakes. After a partial winterkill, we observed a reduction of fish biomass by 16 and 43\% in a clear-water and a turbid small temperate lake, respectively. Fish biomass and piscivore shares (5\% of fish biomass) were similar in both lakes after this winterkill, but young-of-the-year (YOY) abundances were higher in the turbid lake. Top-down control by crustaceans was only partly responsible for low phytoplankton biomass at the end of May following the winterkill in both lakes. Summer phytoplankton biomass remained low in the clear-water lake despite high abundances of YOY fish (mainly roach). In contrast, the crustacean biomass of the turbid lake was reduced in summer by a high YOY abundance (sunbleak and roach), leading to a strong increase in phytoplankton biomass. The YOY abundance of fish in shallow eutrophic lakes may thus be more important for their summer phytoplankton development after winterkill than the relative abundance of piscivores.}, language = {en} } @article{EhrlichGaedke2020, author = {Ehrlich, Elias and Gaedke, Ursula}, title = {Coupled changes in traits and biomasses cascading through a tritrophic plankton food web}, series = {Limnology and oceanography}, volume = {65}, journal = {Limnology and oceanography}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.11466}, pages = {2502 -- 2514}, year = {2020}, abstract = {Trait-based approaches have broadened our understanding of how the composition of ecological communities responds to environmental drivers. This research has mainly focussed on abiotic factors and competition determining the community trait distribution, while effects of trophic interactions on trait dynamics, if considered at all, have been studied for two trophic levels at maximum. However, natural food webs are typically at least tritrophic. This enables indirect interactions of traits and biomasses among multiple trophic levels leading to underexplored effects on food web dynamics. Here, we demonstrate the occurrence of mutual trait adjustment among three trophic levels in a natural plankton food web (Lake Constance) and in a corresponding mathematical model. We found highly recurrent seasonal biomass and trait dynamics, where herbivorous zooplankton increased its size, and thus its ability to counter phytoplankton defense, before phytoplankton defense actually increased. This is contrary to predictions from bitrophic systems where counter-defense of the consumer is a reaction to prey defense. In contrast, counter-defense of carnivores by size adjustment followed the defense of herbivores as expected. By combining observations and model simulations, we show how the reversed trait dynamics at the two lower trophic levels result from a "trophic biomass-trait cascade" driven by the carnivores. Trait adjustment between two trophic levels can therefore be altered by biomass or trait changes of adjacent trophic levels. Hence, analyses of only pairwise trait adjustment can be misleading in natural food webs, while multitrophic trait-based approaches capture indirect biomass-trait interactions among multiple trophic levels.}, language = {en} } @article{RaatzvanVelzenGaedke2019, author = {Raatz, Michael and van Velzen, Ellen and Gaedke, Ursula}, title = {Co-adaptation impacts the robustness of predator-prey dynamics against perturbations}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {7}, publisher = {John Wiley \& Sons}, address = {Hoboken, NJ}, issn = {2045-7758}, doi = {10.1002/ece3.5006}, pages = {3823 -- 3836}, year = {2019}, abstract = {Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co-adaptation in a predator-prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre- and post-perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre-perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations.}, language = {en} } @article{GaedkeStraile1998, author = {Gaedke, Ursula and Straile, Dietmar}, title = {Daphnids : Keystone species for the pelagic food web structure and energy flow ; a body size related analysis linking seasonal changes on the population and ecosystem level}, year = {1998}, abstract = {Seasonal changes of the impact of daphnids on the plankton biomass size distribution, the biomass within individual size ranges, the average predator-prey weight ratios, and the efficiency to transfer matter and energy from small to large organisms are analyzed in large and deep Lake Constance based on comprehensive long-term observations. A comparison of daphnid biomass and production with those of other herbivorous groups (i. e. ciliates, rotifers, herbivorous crustaceans) reveals that in early spring daphnids play a minor role in relative and absolute values as compared to small fast growing ciliates. During this time, small algae and ciliates dominate which gives rise to a decreasing Sheldon-type size spectrum, low predator-prey weight ratios, and a low transfer efficiency along the size gradient. Around June, daphnids reach maximum abundances and become keystone species for the shape of the biomass size distribution, the food web structure, and the energy flow. They accumulate biomass in their size range one order of magnitude above the average. The slope of the normalized biomass size spectrum is less negative and positively correlated with daphnid biomass if the latter exceeds about 200 mg C/m2. This indicates a more efficient transfer along the size gradient with high predator-prey weight ratios and high trophic transfer efficiencies. The coefficients of determination of regression lines fitted to size distributions decrease with daphnid abundance, i. e. the size spectra become more irregular when daphnids dominate. In midsummer, daphnids lose their dominance and coexist with other herbivores (especially ciliates) in a highly diverse plankton community. The latter gives rise to a relatively smooth and almost flat Sheldon-type size distribution, lower predator-prey weight ratios, and a slightly reduced transfer efficiency along the size gradient. In late spring/early summer, negative relationships are found between daphnid biomass and the biomasses in the size ranges of autotrophic picoplankton, small phytoplankton, heterotrophic flagellates, and small and medium sized ciliates (0.06 - 32 pg C and 100-30,000 pg C). In mid- and late summer or on annual average, hardly any of these relationships existed. This cannot solely be attributed to lower daphnid abundance but points also to a more diverse control of small plankton organisms including nutrient limitation in summer. Ciliates influence the slope and shape of the size distribution much less than daphnids although they are at least of equal importance as daphnids in respect to herbivory and related fluxes in Lake Constance on annual average. The findings on the impact of daphnids on the energy flow within the plankton food web derived from size distributions are compared to, and are consistent with results obtained by mass-balanced carbon flow diagrams.}, language = {en} } @article{SpijkermanBehrendFachetal.2018, author = {Spijkerman, Elly and Behrend, Hella and Fach, Bettina and Gaedke, Ursula}, title = {Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {626}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.01.188}, pages = {1342 -- 1349}, year = {2018}, abstract = {The green microalga Chlamydomonas acidophila is an important primary producer in very acidic lakes (pH 2.0-3.5), characterized by high concentrations of ferric iron (up to 1 g total Fe L-1) and low rates of primary production. It was previously suggested that these high iron concentrations result in high iron accumulation and inhibit photosynthesis in C. acidophila. To test this, the alga was grown in sterilized lake water and in medium with varying total iron concentrations under limiting and sufficient inorganic phosphorus (Pi) supply, because Pi is an important growth limiting nutrient in acidic waters. Photosynthesis and growth of C. acidophila as measured over 5 days were largely unaffected by high total iron concentrations and only decreased if free ionic Fe3+ concentrations exceeded 100 mg Fe3+ L-1. Although C. acidophila was relatively rich in iron (up to 5 mmol Fe: mol C), we found no evidence of iron toxicity. In contrast, a concentration of 260 mg total Fe L-1 (i.e. 15 mg free ionic Fe3+ L-1), which is common in many acidic lakes, reduced Pi-incorporation by 50\% and will result in Pi-limited photosynthesis. The resulting Pi-limitation present at high iron and Pi concentrations was illustrated by elevated maximum Pi-uptake rates. No direct toxic effects of high iron were found, but unfavourable chemical Pi-speciation reduced growth of the acidophile alga.}, language = {en} } @article{vanVelzenGaedke2017, author = {van Velzen, Ellen and Gaedke, Ursula}, title = {Disentangling eco-evolutionary dynamics of predator-prey coevolution: the case of antiphase cycles}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-17019-4}, pages = {11}, year = {2017}, abstract = {The impact of rapid predator-prey coevolution on predator-prey dynamics remains poorly understood, as previous modelling studies have given rise to contradictory conclusions and predictions. Interpreting and reconciling these contradictions has been challenging due to the inherent complexity of model dynamics, defying mathematical analysis and mechanistic understanding. We develop a new approach here, based on the Geber method for deconstructing eco-evolutionary dynamics, for gaining such understanding. We apply this approach to a co-evolutionary predator-prey model to disentangle the processes leading to either antiphase or 1/4-lag cycles. Our analysis reveals how the predator-prey phase relationship is driven by the temporal synchronization between prey biomass and defense dynamics. We further show when and how prey biomass and trait dynamics become synchronized, resulting in antiphase cycles, allowing us to explain and reconcile previous modelling and empirical predictions. The successful application of our proposed approach provides an important step towards a comprehensive theory on eco-evolutionary feedbacks in predator-prey systems.}, language = {en} } @article{BauerVosKlauschiesetal.2014, author = {Bauer, Barbara and Vos, Matthijs and Klauschies, Toni and Gaedke, Ursula}, title = {Diversity, functional similarity, and top-down control drive synchronization and the reliability of ecosystem function}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {183}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {3}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/674906}, pages = {394 -- 409}, year = {2014}, abstract = {The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within--trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function.}, language = {en} } @article{RossbergGaedkeKratina2019, author = {Rossberg, Axel G. and Gaedke, Ursula and Kratina, Pavel}, title = {Dome patterns in pelagic size spectra reveal strong trophic cascades}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-12289-0}, pages = {11}, year = {2019}, abstract = {In ecological communities, especially the pelagic zones of aquatic ecosystems, certain bodysize ranges are often over-represented compared to others. Community size spectra, the distributions of community biomass over the logarithmic body-mass axis, tend to exhibit regularly spaced local maxima, called "domes", separated by steep troughs. Contrasting established theory, we explain these dome patterns as manifestations of top-down trophic cascades along aquatic food chains. Compiling high quality size-spectrum data and comparing these with a size-spectrum model introduced in this study, we test this theory and develop a detailed picture of the mechanisms by which bottom-up and top-down effects interact to generate dome patterns. Results imply that strong top-down trophic cascades are common in freshwater communities, much more than hitherto demonstrated, and may arise in nutrient rich marine systems as well. Transferring insights from the general theory of nonlinear pattern formation to domes patterns, we provide new interpretations of past lake-manipulation experiments.}, language = {en} } @article{MehnerLischkeScharnweberetal.2018, author = {Mehner, Thomas and Lischke, Betty and Scharnweber, Inga Kristin and Attermeyer, Katrin and Brothers, Soren and Gaedke, Ursula and Hilt, Sabine and Brucet, Sandra}, title = {Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra}, series = {Ecology : a publication of the Ecological Society of America}, volume = {99}, journal = {Ecology : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.2347}, pages = {1463 -- 1472}, year = {2018}, abstract = {The density of organisms declines with size, because larger organisms need more energy than smaller ones and energetic losses occur when larger organisms feed on smaller ones. A potential expression of density-size distributions are Normalized Biomass Size Spectra (NBSS), which plot the logarithm of biomass independent of taxonomy within bins of logarithmic organismal size, divided by the bin width. Theoretically, the NBSS slope of multi-trophic communities is exactly - 1.0 if the trophic transfer efficiency (TTE, ratio of production rates between adjacent trophic levels) is 10\% and the predator-prey mass ratio (PPMR) is fixed at 10(4). Here we provide evidence from four multi-trophic lake food webs that empirically estimated TTEs correspond to empirically estimated slopes of the respective community NBSS. Each of the NBSS considered pelagic and benthic organisms spanning size ranges from bacteria to fish, all sampled over three seasons in 1 yr. The four NBSS slopes were significantly steeper than -1.0 (range -1.14 to -1.19, with 95\% CIs excluding -1). The corresponding average TTEs were substantially lower than 10\% in each of the four food webs (range 1.0\% to 3.6\%, mean 1.85\%). The overall slope merging all biomass-size data pairs from the four systems (-1.17) was almost identical to the slope predicted from the arithmetic mean TTE of the four food webs (-1.18) assuming a constant PPMR of 10(4). Accordingly, our empirical data confirm the theoretically predicted quantitative relationship between TTE and the slope of the biomass-size distribution. Furthermore, we show that benthic and pelagic organisms can be merged into a community NBSS, but future studies have yet to explore potential differences in habitat-specific TTEs and PPMRs. We suggest that community NBSS may provide valuable information on the structure of food webs and their energetic pathways, and can result in improved accuracy of TTE-estimates.}, language = {en} } @article{PerkinsPernaAdrianetal.2019, author = {Perkins, Daniel M. and Perna, Andrea and Adrian, Rita and Cermeno, Pedro and Gaedke, Ursula and Huete-Ortega, Maria and White, Ethan P. and Yvon-Durocher, Gabriel}, title = {Energetic equivalence underpins the size structure of tree and phytoplankton communities}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-08039-3}, pages = {8}, year = {2019}, abstract = {The size structure of autotroph communities - the relative abundance of small vs. large individuals - shapes the functioning of ecosystems. Whether common mechanisms underpin the size structure of unicellular and multicellular autotrophs is, however, unknown. Using a global data compilation, we show that individual body masses in tree and phytoplankton communities follow power-law distributions and that the average exponents of these individual size distributions (ISD) differ. Phytoplankton communities are characterized by an average ISD exponent consistent with three-quarter-power scaling of metabolism with body mass and equivalence in energy use among mass classes. Tree communities deviate from this pattern in a manner consistent with equivalence in energy use among diameter size classes. Our findings suggest that whilst universal metabolic constraints ultimately underlie the emergent size structure of autotroph communities, divergent aspects of body size (volumetric vs. linear dimensions) shape the ecological outcome of metabolic scaling in forest vs. pelagic ecosystems.}, language = {en} } @article{LischkeHiltJanseetal.2014, author = {Lischke, Betty and Hilt, Sabine and Janse, Jan H. and Kuiper, Jan J. and Mehner, Thomas and Mooij, Wolf M. and Gaedke, Ursula}, title = {Enhanced input of terrestrial particulate organic matter reduces the resilience of the clear-water state of shallow lakes: A model study}, series = {Ecosystems}, volume = {17}, journal = {Ecosystems}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1432-9840}, doi = {10.1007/s10021-014-9747-7}, pages = {616 -- 626}, year = {2014}, abstract = {The amount of terrestrial particulate organic matter (t-POM) entering lakes is predicted to increase as a result of climate change. This may especially alter the structure and functioning of ecosystems in small, shallow lakes which can rapidly shift from a clear-water, macrophyte-dominated into a turbid, phytoplankton-dominated state. We used the integrative ecosystem model PCLake to predict how rising t-POM inputs affect the resilience of the clear-water state. PCLake links a pelagic and benthic food chain with abiotic components by a number of direct and indirect effects. We focused on three pathways (zoobenthos, zooplankton, light availability) by which elevated t-POM inputs (with and without additional nutrients) may modify the critical nutrient loading thresholds at which a clear-water lake becomes turbid and vice versa. Our model results show that (1) increased zoobenthos biomass due to the enhanced food availability results in more benthivorous fish which reduce light availability due to bioturbation, (2) zooplankton biomass does not change, but suspended t-POM reduces the consumption of autochthonous particulate organic matter which increases the turbidity, and (3) the suspended t-POM reduces the light availability for submerged macrophytes. Therefore, light availability is the key process that is indirectly or directly changed by t-POM input. This strikingly resembles the deteriorating effect of terrestrial dissolved organic matter on the light climate of lakes. In all scenarios, the resilience of the clear-water state is reduced thus making the turbid state more likely at a given nutrient loading. Therefore, our study suggests that rising t-POM input can add to the effects of climate warming making reductions in nutrient loadings even more urgent.}, language = {en} } @article{MassieWeithoffKucklaenderetal.2015, author = {Massie, Thomas Michael and Weithoff, Guntram and Kucklaender, Nina and Gaedke, Ursula and Blasius, Bernd}, title = {Enhanced Moran effect by spatial variation in environmental autocorrelation}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms6993}, pages = {8}, year = {2015}, abstract = {Spatial correlations in environmental stochasticity can synchronize populations over wide areas, a phenomenon known as the Moran effect. The Moran effect has been confirmed in field, laboratory and theoretical investigations. Little is known, however, about the Moran effect in a common ecological case, when environmental variation is temporally autocorrelated and this autocorrelation varies spatially. Here we perform chemostat experiments to investigate the temporal response of independent phytoplankton populations to autocorrelated stochastic forcing. In contrast to naive expectation, two populations without direct coupling can be more strongly correlated than their environmental forcing (enhanced Moran effect), if the stochastic variations differ in their autocorrelation. Our experimental findings are in agreement with numerical simulations and analytical calculations. The enhanced Moran effect is robust to changes in population dynamics, noise spectra and different measures of correlation-suggesting that noise-induced synchrony may play a larger role for population dynamics than previously thought.}, language = {en} }