@article{GerlachPreitschopfKaraevetal.2022, author = {Gerlach, Marius and Preitschopf, Tobias and Karaev, Emil and Quitian-Lara, Heidy Mayerly and Mayer, Dennis and Bozek, John and Fischer, Ingo and Fink, Reinhold F.}, title = {Auger electron spectroscopy of fulminic acid, HCNO}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {25}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp02104h}, pages = {15217 -- 15229}, year = {2022}, abstract = {HCNO is a molecule of considerable astrochemical interest as a precursor to prebiotic molecules. It is synthesized by preparative pyrolysis and is unstable at room temperature. Here, we investigate its spectroscopy in the soft X-ray regime at the C 1s, N 1s and O 1s edges. All 1s ionization energies are reported and X-ray absorption spectra reveal the transitions from the 1s to the pi* state. Resonant and normal Auger electron spectra for the decay of the core hole states are recorded in a hemispherical analyzer. An assignment of the experimental spectra is provided with the aid of theoretical counterparts. The latter are using a valence configuration interaction representation of the intermediate and final state energies and wavefunctions, the one-center approximation for transition rates and band shapes according to the moment theory. The computed spectra are in very good agreement with the experimental data and most of the relevant bands are assigned. Additionally, we present a simple approach to estimate relative Auger transition rates on the basis of a minimal basis representation of the molecular orbitals. We demonstrate that this provides a qualitatively good and reliable estimate for several signals in the normal and resonant Auger electron spectra which have significantly different intensities in the decay of the three core holes.}, language = {en} } @article{FritschKurpiersRolandetal.2022, author = {Fritsch, Tobias and Kurpiers, Jona and Roland, Steffen and Tokmoldin, Nurlan and Shoaee, Safa and Ferron, Thomas and Collins, Brian A. and Janietz, Silvia and Vandewal, Koen and Neher, Dieter}, title = {On the interplay between CT and singlet exciton emission in organic solar cells with small driving force and its impact on voltage loss}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200641}, pages = {11}, year = {2022}, abstract = {The interplay between free charge carriers, charge transfer (CT) states and singlet excitons (S-1) determines the recombination pathway and the resulting open circuit voltage (V-OC) of organic solar cells. By combining a well-aggregated low bandgap polymer with different blend ratios of the fullerenes PCBM and ICBA, the energy of the CT state (E-CT) is varied by 130 meV while leaving the S-1 energy of the polymer (ES1\[{E_{{{\rm{S}}_1}}}\]) unaffected. It is found that the polymer exciton dominates the radiative properties of the blend when ECT\[{E_{{\rm{CT}}}}\] approaches ES1\[{E_{{{\rm{S}}_1}}}\], while the V-OC remains limited by the non-radiative decay of the CT state. It is concluded that an increasing strength of the exciton in the optical spectra of organic solar cells will generally decrease the non-radiative voltage loss because it lowers the radiative V-OC limit (V-OC,V-rad), but not because it is more emissive. The analysis further suggests that electronic coupling between the CT state and the S-1 will not improve the V-OC, but rather reduce the V-OC,V-rad. It is anticipated that only at very low CT state absorption combined with a fairly high CT radiative efficiency the solar cell benefit from the radiative properties of the singlet excitons.}, language = {en} } @article{UjevicRashtiGiegetal.2022, author = {Ujevic, Maximiliano and Rashti, Alireza and Gieg, Henrique Leonhard and Tichy, Wolfgang and Dietrich, Tim}, title = {High-accuracy high-mass-ratio simulations for binary neutron stars and their comparison to existing waveform models}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {106}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.106.023029}, pages = {10}, year = {2022}, abstract = {The subsequent observing runs of the advanced gravitational-wave detector network will likely provide us with various gravitational-wave observations of binary neutron star systems. For an accurate interpretation of these detections, we need reliable gravitational-wave models. To test and to point out how existing models could be improved, we perform a set of high-resolution numerical relativity simulations for four different physical setups with mass ratios q = 1.25, 1.50, 1.75, 2.00, and total gravitational mass M = 2.7 M???. Each configuration is simulated with five different resolutions to allow a proper error assessment. Overall, we find approximately second-order converging results for the dominant (2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where we find generally good agreement between state-of-the-art models and our data, and to prove that scaling relations for higher modes currently employed for binary black hole waveform modeling also apply for the tidal contribution. Finally, we also test if the current NRTidal model used to describe tidal effects is a valid description for high-mass-ratio systems. We hope that our simulation results can be used to further improve and test waveform models in preparation for the next observing runs.}, language = {en} } @article{BuechnerdaCruzGroveretal.2022, author = {B{\"u}chner, Robby and da Cruz, Vinicius Vaz and Grover, Nitika and Charisiadis, Asterios and Fondell, Mattis and Haverkamp, Robert and Senge, Mathias O. and F{\"o}hlisch, Alexander}, title = {Fundamental electronic changes upon intersystem crossing in large aromatic photosensitizers: free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp05420a}, pages = {7505 -- 7511}, year = {2022}, abstract = {Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump - N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Q(x) 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores.}, language = {en} } @article{KurilovichMantsevichMardoukhietal.2022, author = {Kurilovich, Aleksandr A. and Mantsevich, Vladimir N. and Mardoukhi, Yousof and Stevenson, Keith J. and Chechkin, Aleksei and Palyulin, Vladimir V.}, title = {Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {22}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp00557c}, pages = {13941 -- 13950}, year = {2022}, abstract = {The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics.}, language = {en} } @article{GrischekCaprioglioZhangetal.2022, author = {Grischek, Max and Caprioglio, Pietro and Zhang, Jiahuan and Pena-Camargo, Francisco and Sveinbjornsson, Kari and Zu, Fengshuo and Menzel, Dorothee and Warby, Jonathan and Li, Jinzhao and Koch, Norbert and Unger, Eva and Korte, Lars and Neher, Dieter and Stolterfoht, Martin and Albrecht, Steve}, title = {Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells}, series = {Solar RRL}, volume = {6}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202200690}, pages = {12}, year = {2022}, abstract = {Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3\% with a MeO-2PACz hole-transporting layer and 20.8\% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved.}, language = {en} } @misc{CaesarMcCarthyThornalleyetal.2022, author = {Caesar, Levke and McCarthy, Gerard D. and Thornalley, David J. R. and Cahill, Niamh and Rahmstorf, Stefan}, title = {Reply to: Atlantic circulation change still uncertain}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {3}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-00897-3}, pages = {168 -- 170}, year = {2022}, language = {en} } @article{LepriPikovsky2022, author = {Lepri, Stefano and Pikovsky, Arkady}, title = {Phase-locking dynamics of heterogeneous oscillator arrays}, series = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, volume = {155}, journal = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-0779}, doi = {10.1016/j.chaos.2021.111721}, pages = {8}, year = {2022}, abstract = {We consider an array of nearest-neighbor coupled nonlinear autonomous oscillators with quenched ran-dom frequencies and purely conservative coupling. We show that global phase-locked states emerge in finite lattices and study numerically their destruction. Upon change of model parameters, such states are found to become unstable with the generation of localized periodic and chaotic oscillations. For weak nonlinear frequency dispersion, metastability occur akin to the case of almost-conservative systems. We also compare the results with the phase-approximation in which the amplitude dynamics is adiabatically eliminated.}, language = {en} } @article{PenaCamargoThiesbrummelHempeletal.2022, author = {Pena-Camargo, Francisco and Thiesbrummel, Jarla and Hempel, Hannes and Musiienko, Artem and Le Corre, Vincent M. and Diekmann, Jonas and Warby, Jonathan and Unold, Thomas and Lang, Felix and Neher, Dieter and Stolterfoht, Martin}, title = {Revealing the doping density in perovskite solar cells and its impact on device performance}, series = {Applied physics reviews}, volume = {9}, journal = {Applied physics reviews}, number = {2}, publisher = {AIP Publishing}, address = {Melville}, issn = {1931-9401}, doi = {10.1063/5.0085286}, pages = {11}, year = {2022}, abstract = {Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities.}, language = {en} } @article{DudiDietrichRashtietal.2022, author = {Dudi, Reetika and Dietrich, Tim and Rashti, Alireza and Br{\"u}gmann, Bernd and Steinhoff, Jan and Tichy, Wolfgang}, title = {High-accuracy simulations of highly spinning binary neutron star systems}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {105}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.105.064050}, pages = {13}, year = {2022}, abstract = {With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and antialigned spins within a range of dimensionless spins of chi similar to [-0.28, 0.58]. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 arc not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models.}, language = {en} } @article{PohlMaciasColemanetal.2022, author = {Pohl, Martin and Macias, Oscar and Coleman, Phaedra and Gordon, Chris}, title = {Assessing the impact of hydrogen absorption on the characteristics of the Galactic center excess}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac6032}, pages = {13}, year = {2022}, abstract = {We present a new reconstruction of the distribution of atomic hydrogen in the inner Galaxy that is based on explicit radiation transport modeling of line and continuum emission and a gas-flow model in the barred Galaxy that provides distance resolution for lines of sight toward the Galactic center. The main benefits of the new gas model are (a) the ability to reproduce the negative line signals seen with the HI4PI survey and (b) the accounting for gas that primarily manifests itself through absorption. We apply the new model of Galactic atomic hydrogen to an analysis of the diffuse gamma-ray emission from the inner Galaxy, for which an excess at a few GeV was reported that may be related to dark matter. We find with high significance an improved fit to the diffuse gamma-ray emission observed with the Fermi-LAT, if our new H i model is used to estimate the cosmic-ray induced diffuse gamma-ray emission. The fit still requires a nuclear bulge at high significance. Once this is included there is no evidence of a dark-matter signal, be it cuspy or cored. But an additional so-called boxy bulge is still favored by the data. This finding is robust under the variation of various parameters, for example, the excitation temperature of atomic hydrogen, and a number of tests for systematic issues.}, language = {en} } @article{MishurovaStegemannLyamkinetal.2022, author = {Mishurova, Tatiana and Stegemann, Robert and Lyamkin, Viktor and Cabeza, Sandra and Evsevleev, Sergei and Pelkner, Matthias and Bruno, Giovanni}, title = {Subsurface and bulk residual stress analysis of S235JRC+C Steel TIG weld by diffraction and magnetic stray field measurements}, series = {Experimental mechanics : an international journal of the Society for Experimental Mechanics}, volume = {62}, journal = {Experimental mechanics : an international journal of the Society for Experimental Mechanics}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0014-4851}, doi = {10.1007/s11340-022-00841-x}, pages = {1017 -- 1025}, year = {2022}, abstract = {Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements.}, language = {en} } @article{AshtonDietrich2022, author = {Ashton, Gregory and Dietrich, Tim}, title = {The use of hypermodels to understand binary neutron star collisions}, series = {Nature astronomy}, volume = {6}, journal = {Nature astronomy}, number = {8}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2397-3366}, doi = {10.1038/s41550-022-01707-x}, pages = {961 -- 967}, year = {2022}, abstract = {Gravitational waves from the collision of binary neutron stars provide a unique opportunity to study the behaviour of supranuclear matter, the fundamental properties of gravity and the cosmic history of our Universe. However, given the complexity of Einstein's field equations, theoretical models that enable source-property inference suffer from systematic uncertainties due to simplifying assumptions. We develop a hypermodel approach to compare and measure the uncertainty of gravitational-wave approximants. Using state-of-the-art models, we apply this new technique to the binary neutron star observations GW170817 and GW190425 and to the sub-threshold candidate GW200311_103121. Our analysis reveals subtle systematic differences (with Bayesian odds of similar to 2) between waveform models. A frequency-dependence study suggests that this may be due to the treatment of the tidal sector. This new technique provides a proving ground for model development and a means to identify waveform systematics in future observing runs where detector improvements will increase the number and clarity of binary neutron star collisions we observe.}, language = {en} } @article{RamosLariosToalaRodriguezGonzalezetal.2022, author = {Ramos-Larios, Gerardo and Toala, Jes{\´u}s Alberto and Rodriguez-Gonzalez, Janis B. and Guerrero, Martin A. and Gomez-Gonzalez, V{\´i}ctor Mauricio Alfonso}, title = {Rings and arcs around evolved stars - III. Physical conditions of the ring-like structures in the planetary nebula IC 4406 revealed by MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac605}, pages = {2862 -- 2868}, year = {2022}, abstract = {We present the analysis of Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE) observations of the planetary nebula (PN) IC 4406. MUSE images in key emission lines are used to unveil the presence of at least five ring-like structures north and south of the main nebula of IC4406. MUSE spectra are extracted from the rings to unambiguously assess for the first time in a PN their physical conditions, electron density (n(e)), and temperature (T-e). The rings are found to have similar T-e as the rim of the main nebula, but smaller n(e). Ratios between different ionic species suggest that the rings of IC4406 have a lower ionization state than the main cavity, in contrast to what was suggested for the rings in NGC 6543, the Cat's Eye Nebula.}, language = {en} } @article{vanMarleBohdanMorrisetal.2022, author = {van Marle, Allard Jan and Bohdan, Artem and Morris, Paul J. and Pohl, Martin and Marcowith, Alexandre}, title = {Diffusive shock acceleration at oblique high mach number shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1538-4357}, doi = {10.3847/1538-4357/ac5962}, pages = {10}, year = {2022}, abstract = {The current paradigm of cosmic-ray (CR) origin states that the greater part of galactic CRs is produced by supernova remnants. The interaction of supernova ejecta with the interstellar medium after a supernova's explosions results in shocks responsible for CR acceleration via diffusive shock acceleration (DSA). We use particle-in-cell (PIC) simulations and a combined PIC-magnetohydrodynamic (PIC-MHD) technique to investigate whether DSA can occur in oblique high Mach number shocks. Using the PIC method, we follow the formation of the shock and determine the fraction of the particles that gets involved in DSA. With this result, we use PIC-MHD simulations to model the large-scale structure of the plasma and the magnetic field surrounding the shock and find out whether or not the reflected particles can generate upstream turbulence and trigger DSA. We find that the feasibility of this process in oblique shocks depends strongly on the Alfvenic Mach number, and the DSA process is more likely to be triggered at high Mach number shocks.}, language = {en} } @article{SidoliSgueraEspositoetal.2022, author = {Sidoli, Lara and Sguera, Vito and Esposito, Paolo and Oskinova, Lida and Polletta, Maria del Carmen}, title = {XMM-Newton discovery of very high obscuration in the candidate Supergiant Fast X-ray Transient AX J1714.1-3912}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac691}, pages = {2929 -- 2935}, year = {2022}, abstract = {We have analysed an archival XMM-Newton EPIC observation that serendipitously covered the sky position of a variable X-ray source AX J1714.1-3912, previously suggested to be a Supergiant Fast X-ray Transient (SFXT). During the XMM-Newton observation the source is variable on a timescale of hundred seconds and shows two luminosity states, with a flaring activity followed by unflared emission, with a variability amplitude of a factor of about 50. We have discovered an intense iron emission line with a centroid energy of 6.4 keV in the power law-like spectrum, modified by a large absorption (N-H similar to 10(24) cm(-2)), never observed before from this source. This X-ray spectrum is unusual for an SFXT, but resembles the so-called 'highly obscured sources', high mass X-ray binaries (HMXBs) hosting an evolved B[e] supergiant companion (sgB[e]). This might suggest that AX J1714.1-3912 is a new member of this rare type of HMXBs, which includes IGR J16318-4848 and CI Camelopardalis. Increasing this small population of sources would be remarkable, as they represent an interesting short transition evolutionary stage in the evolution of massive binaries. Nevertheless, AX J1714.1-3912 appears to share X-ray properties of both kinds of HMXBs (SFXT versus sgB[e] HMXB). Therefore, further investigations of the companion star are needed to disentangle the two hypothesis.}, language = {en} } @article{RieseVogelsangSchroederetal.2022, author = {Riese, Josef and Vogelsang, Christoph and Schr{\"o}der, Jan and Borowski, Andreas and Kulgemeyer, Christoph and Reinhold, Peter and Schecker, Horst}, title = {The development of lesson planning skills in the subject of physics}, series = {Zeitschrift f{\"u}r Erziehungswissenschaft}, journal = {Zeitschrift f{\"u}r Erziehungswissenschaft}, number = {4}, publisher = {Springer VS/Springer Fachmedien Wiesbaden GmbH}, address = {Wiesbaden}, issn = {1434-663X}, doi = {10.1007/s11618-022-01112-0}, pages = {843 -- 867}, year = {2022}, abstract = {One main goal of university teacher education is the first acquisition of skills for theory-driven lesson planning. According to models of teachers' professional competence, it is assumed that the acquired professional knowledge represents an essential basis for the development of planning skills. Learning opportunities to apply this professional knowledge often occur in school internships, usually in advanced semesters of teacher education programs. It is also assumed that practical experience within lesson planning supports the formation of professional knowledge. However, the relationship between the extent of professional knowledge and the development of skills to plan a lesson lacks evidence. There is a particular challenge in measuring lesson planning skills both authentically and standardized. To evaluate the mentioned relationship, a longitudinal pre-post-study with prospective physics-teachers (N = 68 in the longitudinal section) was conducted at four German universities. Pre-service physics teachers' skills to plan a lesson were assessed with a standardized performance assessment at the beginning and at the end of a longterm-internship. This assessment consists of planning a physics lesson, conveying Newton's third Law, in a simulated and standardized way with limited time. In addition, content knowledge, pedagogical content knowledge and pedagogical knowledge has been assessed using standardized instruments. Furthermore, additional information about the internship and the amount of learning opportunities was collected at the end of the internship. During the internship, both lesson planning skills and all components of professional knowledge increased. Cross-Lagged-Panel-Analyses reveal that in particular pre-service teachers' pedagogical content knowledge as well as pedagogical knowledge at the beginning of the internship influences the development of lesson planning skills.}, language = {de} } @article{JohanssonLeitnerBidermaneetal.2022, author = {Johansson, Fredrik O. L. and Leitner, Torsten and Bidermane, Ieva and Born, Artur and F{\"o}hlisch, Alexander and Svensson, Svante and M{\aa}rtensson, Nils and Lindblad, Andreas}, title = {Auger- and photoelectron coincidences of molecular O2 adsorbed on Ag(111)}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {256}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0368-2048}, doi = {10.1016/j.elspec.2022.147174}, pages = {6}, year = {2022}, abstract = {The oxygen on Ag(111) system has been investigated with Auger electron-photoelectron coincidence spectroscopy (APECS). The coincidence spectra between O 1s core level photoelectrons and O KLL Auger electrons have been studied together with Ag(3)d/AgM4,5NN coincidences. We also describe the electron-electron coincidence spectrometer setup, CoESCA, consisting of two angle resolved time-of-flight spectrometers at a synchrotron light source. Contributions from molecular oxygen and chemisorbed oxygen are assigned using the coincidence data, conclusions are drawn primarily from the O 1s/O KLL data. The data acquisition and treatment procedure are also outlined. The chemisorbed oxygen species observed are relevant for the catalytic ethylene oxidation.}, language = {en} } @article{DoerriesChechkinSchumeretal.2022, author = {Doerries, Timo J. and Chechkin, Aleksei and Schumer, Rina and Metzler, Ralf}, title = {Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.014105}, pages = {24}, year = {2022}, abstract = {We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems.}, language = {en} } @article{SandevDomazetoskiKocarevetal.2022, author = {Sandev, Trifce and Domazetoski, Viktor and Kocarev, Ljupco and Metzler, Ralf and Chechkin, Aleksei}, title = {Heterogeneous diffusion with stochastic resetting}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {7}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac491c}, pages = {26}, year = {2022}, abstract = {We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation.}, language = {en} }