@phdthesis{Altabal2021, author = {Altabal, Osamah}, title = {Design and fabrication of geometry-assisted on-demand dosing systems}, doi = {10.25932/publishup-53244}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532441}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 122}, year = {2021}, abstract = {The controlled dosage of substances from a device to its environment, such as a tissue or an organ in medical applications or a reactor, room, machinery or ecosystem in technical, should ideally match the requirements of the applications, e.g. in terms of the time point at which the cargo is released. On-demand dosage systems may enable such a desired release pattern, if the device contain suitable features that can translate external signals into a release function. This study is motivated by the opportunities arising from microsystems capable of an on-demand release and the contributions that geometrical design may have in realizing such features. The goals of this work included the design, fabrication, characterization and experimental proof-of-concept of geometry-assisted triggerable dosing effect (a) with a sequential dosing release and (b) in a self-sufficient dosage system. Structure-function relationships were addressed on the molecular, morphological and, with a particular attention, the device design level, which is on the micrometer scale. Models and/or computational tools were used to screen the parameter space and provide guidance for experiments.}, language = {en} } @misc{AlbrechtCummingKreuderetal.1986, author = {Albrecht, O. and Cumming, W. and Kreuder, W. and Laschewsky, Andr{\´e} and Ringsdorf, Helmut}, title = {Monolayers of rod-shaped and disc-shaped liquid crystalline compounds at the air-water interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17124}, year = {1986}, abstract = {Calamitic (rod-shaped) and discotic (disc-shaped) thermotropic liquid crystalline (LC) compounds were spread at the air-water interface, and their ability to form monolayers was studied. The calamitic LCs investigated were found to form monolayers which behave analogously to conventional amphiphiles such as fatty acids. The spreading of the discotic LCs produced monolayers as well, but with a behaviour different from classical amphiphiles. The areas occupied per molecule are too small to allow the contact of all hydrophilic groups with the water surface and the packing of all hydrophobic chains. Various molecular arrangements of the discotics at the water surface to fit the spreading data are discussed.}, language = {en} } @misc{AlNajiSchlaadAntonietti2020, author = {Al-Naji, Majd and Schlaad, Helmut and Antonietti, Markus}, title = {New (and old) monomers from biorefineries to make polymer chemistry more sustainable}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-57061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570614}, pages = {13}, year = {2020}, abstract = {This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers.}, language = {en} } @phdthesis{Adelhelm2007, author = {Adelhelm, Philipp}, title = {Novel carbon materials with hierarchical porosity : templating strategies and advanced characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15053}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The aim of this work was the generation of carbon materials with high surface area, exhibiting a hierarchical pore system in the macro- and mesorange. Such a pore system facilitates the transport through the material and enhances the interaction with the carbon matrix (macropores are pores with diameters > 50 nm, mesopores between 2 - 50 nm). Thereto, new strategies for the synthesis of novel carbon materials with designed porosity were developed that are in particular useful for the storage of energy. Besides the porosity, it is the graphene structure itself that determines the properties of a carbon material. Non-graphitic carbon materials usually exhibit a quite large degree of disorder with many defects in the graphene structure, and thus exhibit inherent microporosity (d < 2nm). These pores are traps and oppose reversible interaction with the carbon matrix. Furthermore they reduce the stability and conductivity of the carbon material, which was undesired for the proposed applications. As one part of this work, the graphene structures of different non-graphitic carbon materials were studied in detail using a novel wide-angle x-ray scattering model that allowed precise information about the nature of the carbon building units (graphene stacks). Different carbon precursors were evaluated regarding their potential use for the synthesis shown in this work, whereas mesophase pitch proved to be advantageous when a less disordered carbon microstructure is desired. By using mesophase pitch as carbon precursor, two templating strategies were developed using the nanocasting approach. The synthesized (monolithic) materials combined for the first time the advantages of a hierarchical interconnected pore system in the macro- and mesorange with the advantages of mesophase pitch as carbon precursor. In the first case, hierarchical macro- / mesoporous carbon monoliths were synthesized by replication of hard (silica) templates. Thus, a suitable synthesis procedure was developed that allowed the infiltration of the template with the hardly soluble carbon precursor. In the second case, hierarchical macro- / mesoporous carbon materials were synthesized by a novel soft-templating technique, taking advantage of the phase separation (spinodal decomposition) between mesophase pitch and polystyrene. The synthesis also allowed the generation of monolithic samples and incorporation of functional nanoparticles into the material. The synthesized materials showed excellent properties as an anode material in lithium batteries and support material for supercapacitors.}, language = {en} } @misc{AdamovichMirskovaMirskovetal.2017, author = {Adamovich, Sergey N. and Mirskova, Anna N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Synthesis and crystal structure of 1,4,10,13-tetraoxa-7,16-diazoniumcyclo-octadecane bis(4-chloro-2-methyl-phenoxyacetate)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400905}, pages = {4}, year = {2017}, abstract = {The title compound was prepared by the reaction of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane with 4-chloro-2-methyl-phenoxyacetic acid in a ratio of 1:2. The structure has been proved by the data of elemental analysis, IR spectroscopy, NMR ( 1 H, 13 C) technique and by X-ray diffraction analysis. Intermolecular hydrogen bonds between the azonium protons and oxygen atoms of the carboxylate groups were found. Immunoactive properties of the title compound have been screened. The compound has the ability to suppress spontaneous and Con A-stimulated cell proliferation in vitro and therefore can be considered as immunodepressant.}, language = {en} } @phdthesis{Abouserie2018, author = {Abouserie, Ahed}, title = {Ionic liquid precursors for multicomponent inorganic nanomaterials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418950}, school = {Universit{\"a}t Potsdam}, pages = {xx, 193}, year = {2018}, abstract = {Health effects, attributed to the environmental pollution resulted from using solvents such as benzene, are relatively unexplored among petroleum workers, personal use, and laboratory researchers. Solvents can cause various health problems, such as neurotoxicity, immunotoxicity, and carcinogenicity. As such it can be absorbed via epidermal or respiratory into the human body resulting in interacting with molecules that are responsible for biochemical and physiological processes of the brain. Owing to the ever-growing demand for finding a solution, an Ionic liquid can use as an alternative solvent. Ionic liquids are salts in a liquid state at low temperature (below 100 C), or even at room temperature. Ionic liquids impart a unique architectural platform, which has been interesting because of their unusual properties that can be tuned by simple ways such as mixing two ionic liquids. Ionic liquids not only used as reaction solvents but they became a key developing for novel applications based on their thermal stability, electric conductivity with very low vapor pressure in contrast to the conventional solvents. In this study, ionic liquids were used as a solvent and reactant at the same time for the novel nanomaterials synthesis for different applications including solar cells, gas sensors, and water splitting. The field of ionic liquids continues to grow, and become one of the most important branches of science. It appears to be at a point where research and industry can work together in a new way of thinking for green chemistry and sustainable production.}, language = {en} } @misc{AbbasVranicHoffmannetal.2019, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {701}, issn = {1866-8372}, doi = {10.25932/publishup-42792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427926}, year = {2019}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @book{OPUS4-4353, title = {EUCHIS '99 : proceedings of the 3rd international conference of the European Chitin Society, Potsdam, Germany, Aug. 31 - Sept. 3, 1999}, isbn = {978-3-980649-45-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45492}, publisher = {Universit{\"a}t Potsdam}, year = {2000}, abstract = {Contents: Production and Applications of Chitin and Chitosan Krill as a promising raw material for the production of chitin in Europe - Containerized plant for producing chitin - Preparation and characterization of chitosan from Mucorales - Chitosan from Absidia orchidis - Scaling up of lactic acid fermentation of prawn wastes in packed-bed column reactor for chitin recovery - Preparation of chitin by acetic acid fermentation - Inter-source reproducibility of the chitin deacetylation process - Comparative analysis of chitosans from insects and crustacea - Effect of the rate of deacetylation on the physico-chemical properties of cuttlefish chitosan - Deacetylation of chitin by fungal enzymes - Production of partially degraded chitosan with desired molecular weight - Chitin-containing materials Mycoton for wounds treatment - Biological activity of selected forms of chitosan - Application of chitosan on the preservation quality of cut flowers - Preparation and characterization of chitosan films: application in cell cultures - Transport phenomena in chitin gels - Symplex membranes of chitosan and sulphoethylcellulose - Preparation and use of chitosan-Ca pectinate pellets - Bioseparation of protein from cheese whey by using chitosan coagulation and ultrafiltration membranes - Preparation of silk fibroin/chitosan fiber - Preparation of paper sheets containing microcrystalline chitosan - Applications of chitosan in textile printing - Permanent modification of fibrous materials with biopolymers - Ion exchanger from chitosan - Chitosan in waste water treatment - The immobilization of tyrosinase on chitin and chitosan and its possible use in wastewater treatment - Utilization of modified chitosan in aqueous system treatment Biomaterials Chemical and preclinical studies on 6-oxychitin - Diverse biological effects of fungal chitin-glucan complex - Effect of concentration of neutralizing agent on chitosan membrane properties - Preliminary investigation of the compatibility of a chitosan-based peritoneal dialysis solution - Influence of chitosan on the growth of several cellular lines - A new chitosan containing phosphonic group with chelating properties - Biocompatibility of chitin materials using cell culture method Oral Administration of Chitosan Recent results in the oral administration of chitosan - Reduction of absorption of dietary lipids and cholesterol by chitosan, its derivatives and special formulations - Chitosan in weight reduction: results from a large scale consumer study - Conformation of chitosan ascorbic acid salt - Trimethylated chitosans as safe absorption enhancers for transmucosal delivery of peptide drugs - Chitosan derivates as intestinal penetration enhancers of the peptide drug buserelin in vivo and in vitro - Chitosan microparticles for oral vaccination: optimization and characterization - Effect of chitosan in enhancing drug delivery across buccal mucosa - Influence of chitosans on permeability of human intestinal epithelial (Caco-2) cells: The effect of molecular weight, degree of deacetylation and exposure time - Oral polymeric N-acetyl-D-glucosamine as potential treatment for patients with osteoarthritis - Clinicoimmunological efficiency of the chitin-containing drug Mycoton in complex treatment of a chronic hepatitis - Interactions of chitin, chitosan, N-laurylchitosan, and N-dimethylaminopropyl chitosan with olive oil - The chitin-containing preparation Mycoton in a pediatric gastroenterology case - Antifungal activity and release behaviour of cross-linked chitosan films incorporated with chlorhexidine gluconate - Release of N-acetyl-D-glucosamine from chitosan in saliva - Physical and Physicochemical Properties Recent approach of metal binding by chitosan and derivatives - As(V) sorption on molybdate-impregnated chitosan gel beads (MICB) - Influence of medium pH on the biosorption of heavy metals by chitin-containing sorbent Mycoton - Comparative studies on molecular chain parameters of polyelectrolyte chains: the stiffness parameter B and temperature coefficient of intrinsic viscosity of chitosans and poly(diallyldimethylammonium chloride) - Crystalline behavior of chitosan - The relationship between the crystallinity and degree of deacetylation of chitin from crab shell - Reversible water-swellable chitin gel: modulation of swellability - Syneresis aspects of chitosan based gel systems - In situ chitosan gelation using the enzyme tyrosinase - Preparation and characterization of controlling pore size chitosan membranes - Fabrication of porous chitin matrices - Changes of polydispersity and limited molecular weight of ultrasonic treated chitosan - A statistical evaluation of IR spectroscopic methods to determine the degree of acetylation of ?-chitin and chitosan - Products of alkaline hydrolysis of dibutyrylchitin: chemical composition and DSC investigation - Chitosan emulsification properties Chemistry of Chitin and Chitosan Chemically modified chitinous materials: preparation and properties - Progress on the modification of chitosan - The graft copolymerization of chitosan with methyl acrylate using an organohalide-manganese carbonyl coinitiator system - Grafting of 4-vinylpyridine, maleic acid and maleic anhydride onto chitin and chitosan - Peptide synthesis on chitosan/chitin - Graft copolymerization of methyl methacrylate onto mercapto-chitin - Thermal depolymerization of chitosan salts - Radiolysis and sonolysis of chitosan - two convenient techniques for a controlled reduction of molecular weight - Thermal and UV degradation of chitosan - Heat-induced physicochemical changes in highly deacetylated chitosan - Chitosan fiber and its chemical N-modification at the fiber state for use as functional materials - Preparation of a fiber reactive chitosan derivative with enhanced microbial activity - Chromatographic separation of rare earths with complexane types of chemically modified chitosan - The effects of detergents on chitosan - Chitosan-alginate PEC films prepared from chitosan of different molecular weights - Enzymology of Chitin and Chitosan Biosynthesis and Degradation Enzymes of chitin metabolism for the design of antifungals - Enzymatic degradation of chitin by microorganisms - Kinetic behaviours of chitinase isozymes - An acidic chitinase from gizzards of broiler (Gallus gallus L.) - On the contribution of conserved acidic residues to catalytic activity of chitinase B from Serratia marcescens - Detection, isolation and preliminary characterisation of a new hyperthermophilic chitinase from the anaerobic archaebacterium Thermococcus chitonophagus - Biochemical and genetic engineering studies on chitinase A from Serratia marcescens - Induction of chitinase production by Serratia marcescens, using a synthetic N-acetylglucosamine derivative - Libraries of chito-oligosaccharides of mixed acetylation patterns and their interactions with chitinases - Approaches towards the design of new chitinase inhibitors - Allosamidin inhibits the fragmentation and autolysis of Penicillium chrysogenum - cDNA encoding chitinase in the midge, Chironomus tentans - Extraction and purification of chitosanase from Bacillus cereus - Substrate binding mechanism of chitosanase from Streptomyces sp. N174 - Chitosanase-catalyzed hydrolysis of 4-methylumbelliferyl ?-chitotrioside - A rust fungus turns chitin into chitosan upon plant tissue colonization to evade recognition by the host - Antibiotic kanosamine is an inhibitor of chitin biosynthesis in fungi - PCR amplification of chitin deacetylase genes - Amplification of antifungal effect of GlcN-6-P synthase and chitin synthase inhibitors - ?-N-Acetylhexosaminidases: two enzyme families, two mechanisms - Purification and characterisation of chitin deacetylase from Absidia orchidis - Effect of aluminium ion on hydrolysis reaction of carboxymethyl- and dihydroxypropyl-chitin with lysozyme - Structure and function relatioship of human N-acetyl-D-glucosamine 2-epimerase (renin binding protein) - Identification of active site residue(s)}, language = {en} }