@article{HeroldAignerGrilletal.2019, author = {Herold, Heike M. and Aigner, Tamara Bernadette and Grill, Carolin E. and Kr{\"u}ger, Stefanie and Taubert, Andreas and Scheibel, Thomas R.}, title = {SpiderMAEn}, series = {Bioinspired, Biomimetic and Nanobiomaterials}, volume = {8}, journal = {Bioinspired, Biomimetic and Nanobiomaterials}, number = {1}, publisher = {ICE Publishing}, address = {Westminister}, issn = {2045-9858}, doi = {10.1680/jbibn.18.00007}, pages = {99 -- 108}, year = {2019}, abstract = {A growing energy demand requires new and preferably renewable energy sources. The infinite availability of solar radiation makes its conversion into storable and transportable energy forms attractive for research as well as for the industry. One promising example of a transportable fuel is hydrogen (H-2), making research into eco-friendly hydrogen production meaningful. Here, a hybrid system was developed using newly designed recombinant spider silk protein variants as a template for mineralization with inorganic titanium dioxide and gold. These bioinspired organic/inorganic hybrid materials allow for hydrogen production upon light irradiation. To begin with, recombinant spider silk proteins bearing titanium dioxide and gold-binding moieties were created and processed into structured films. These films were modified with gold and titanium dioxide in order to produce a photocatalyst. Subsequent testing revealed hydrogen production as a result of light-induced hydrolysis of water. Therefore, the novel setup presented here provides access to a new principle of generating advanced hybrid materials for sustainable hydrogen production and depicts a promising platform for further studies on photocatalytic production of hydrogen, the most promising future fuel.}, language = {en} } @article{UnuabonahAgunbiadeAlfredetal.2017, author = {Unuabonah, Emmanuel Iyayi and Agunbiade, Foluso O. and Alfred, Moses O. and Adewumi, Thompson A. and Okoli, Chukwunonso P. and Omorogie, Martins O. and Akanbi, Moses O. and Ofomaja, Augustine E. and Taubert, Andreas}, title = {Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water}, series = {Journal of Cleaner Production}, volume = {164}, journal = {Journal of Cleaner Production}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2017.06.160}, pages = {652 -- 663}, year = {2017}, abstract = {New hybrid clay materials with good affinity for phosphate ions were developed from a combination of biomass-Carica papaya seeds (PS) and Musa paradisiaca (Plantain peels-PP), ZnCl2 and Kaolinite clay to produce iPS-HYCA and iPP-HYCA composite adsorbents respectively. Functionalization of these adsorbents with an organosilane produced NPS-HYCA and NPP-HYCA composite adsorbents. The pH(pzc) for the adsorbents were 7.83, 6.91, 7.66 and 6.55 for iPS-HYCA, NPS-HYCA, iPP-HYCA and NPP-HYCA respectively. Using the Brouer-Sotolongo isotherm model which best predict the adsorption capacity of composites for phosphate, iPP-HYCA, iPS-HYCA, NPP-HYCA, and NPS-HYCA composite adsorbents respectively. When compared with some commercial resins, the amino-functionalized adsorbents had better adsorption capacities. Furthermore, amino-functionalized adsorbents showed improved adsorption capacity and rate of phosphate uptake (as much as 40-fold), as well as retain 94\% (for NPS-HYCA) and 84.1\% (for NPP-HYCA) efficiency for phosphate adsorption after 5 adsorption-desorption cycles (96 h of adsorption time with 100 mg/L of phosphate ions) as against 37.5\% (for iPS-HYCA) and 35\% (for iPP-HYCA) under similar conditions. In 25 min desorption of phosphate ion attained equilibrium. These new amino-functionalized hybrid clay composite adsorbents, which were prepared by a simple means that is sustainable, have potentials for the efficient capture of phosphate ions from aqueous solution. They are quickly recovered from aqueous solution, non-biodegradable (unlike many biosorbent) with potentials to replace expensive adsorbents in the future. They have the further advantage of being useful in the recovery of phosphate for use in agriculture which could positively impact the global food security programme. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{IhlenburgLehnenKoetzetal.2021, author = {Ihlenburg, Ramona and Lehnen, Anne-Catherine and Koetz, Joachim and Taubert, Andreas}, title = {Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1093}, issn = {1866-8372}, doi = {10.25932/publishup-48898}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-488987}, pages = {13}, year = {2021}, abstract = {New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.}, language = {en} } @article{IhlenburgLehnenKoetzetal.2021, author = {Ihlenburg, Ramona and Lehnen, Anne-Catherine and Koetz, Joachim and Taubert, Andreas}, title = {Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions}, series = {Polymers / Molecular Diversity Preservation International}, volume = {13}, journal = {Polymers / Molecular Diversity Preservation International}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym13020208}, pages = {11}, year = {2021}, abstract = {New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.}, language = {en} } @article{UgwujaAdelowoOgunlajaetal.2019, author = {Ugwuja, Chidinma G. and Adelowo, Olawale O. and Ogunlaja, Aemere and Omorogie, Martins O. and Olukanni, Olumide D. and Ikhimiukor, Odion O. and Iermak, Ievgeniia and Kolawole, Gabriel A. and G{\"u}nter, Christina and Taubert, Andreas and Bodede, Olusola and Moodley, Roshila and Inada, Natalia M. and Camargo, Andrea S.S. de and Unuabonah, Emmanuel Iyayi}, title = {Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {28}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.9b01212}, pages = {25483 -- 25494}, year = {2019}, abstract = {This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries.}, language = {en} } @article{TaoLiuWuetal.2020, author = {Tao, Lumi and Liu, Yuchuan and Wu, Dan and Wei, Qiao-Hua and Taubert, Andreas and Xie, Zailai}, title = {Luminescent Ionogels with Excellent Transparency, High Mechanical Strength, and High Conductivity}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano10122521}, pages = {11}, year = {2020}, abstract = {The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf₂]) within an organic-inorganic hybrid host. The organic-inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic-organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO₂. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf₂] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm⁻¹ at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels.}, language = {en} } @misc{TaoLiuWuetal.2020, author = {Tao, Lumi and Liu, Yuchuan and Wu, Dan and Wei, Qiao-Hua and Taubert, Andreas and Xie, Zailai}, title = {Luminescent Ionogels with Excellent Transparency, High Mechanical Strength, and High Conductivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1058}, issn = {1866-8372}, doi = {10.25932/publishup-48733}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487334}, pages = {13}, year = {2020}, abstract = {The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf₂]) within an organic-inorganic hybrid host. The organic-inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic-organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO₂. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf₂] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm⁻¹ at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels.}, language = {en} } @misc{SchneiderGuenterTaubert2018, author = {Schneider, Matthias and G{\"u}nter, Christina and Taubert, Andreas}, title = {Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1057}, issn = {1866-8372}, doi = {10.25932/publishup-47442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474427}, pages = {21}, year = {2018}, abstract = {The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.}, language = {en} } @misc{ViouxTaubert2014, author = {Vioux, Andr{\´e} and Taubert, Andreas}, title = {Ionic liquids 2014 and selected papers from ILMAT 2013}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1055}, issn = {1866-8372}, doi = {10.25932/publishup-47506}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475062}, pages = {6}, year = {2014}, language = {en} } @misc{HeyneArltGessneretal.2020, author = {Heyne, Benjamin and Arlt, Kristin and Geßner, Andr{\´e} and Richter, Alexander F. and D{\"o}blinger, Markus and Feldmann, Jochen and Taubert, Andreas and Wedel, Armin}, title = {Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1026}, issn = {1866-8372}, doi = {10.25932/publishup-48603}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486032}, pages = {26}, year = {2020}, abstract = {Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45\%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41\%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34\%.}, language = {en} } @article{HeyneArltGessneretal.2020, author = {Heyne, Benjamin and Arlt, Kristin and Geßner, Andr{\´e} and Richter, Alexander F. and D{\"o}blinger, Markus and Feldmann, Jochen and Taubert, Andreas and Wedel, Armin}, title = {Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano10091858}, pages = {24}, year = {2020}, abstract = {Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45\%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41\%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34\%.}, language = {en} } @article{ZehbeLangeTaubert2019, author = {Zehbe, Kerstin and Lange, Alyna and Taubert, Andreas}, title = {Stereolithography Provides Access to 3D Printed lonogels with High Ionic Conductivity}, series = {Energy Fuels}, volume = {33}, journal = {Energy Fuels}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {0887-0624}, doi = {10.1021/acs.energyfuels.9b03379}, pages = {12885 -- 12893}, year = {2019}, abstract = {New ionogels (IGs) were prepared by combination of a series of sulfonate-based ionic liquids (ILs), 1-methyl-3-(4-sulfobutyl)imidazolium para-toluenesulfonate [BmimSO(3)][pTS], 1-methyl-1-butylpiperidiniumsulfonate para-toluenesul-fonate [BmpipSO(3)] [pTS], and 1-methyl-3-(4-sulfobutyl) imidazolium methylsulfonate [BmimSO(3)H][MeSO3] with a commercial stereolithography photoreactive resin. The article describes both the fundamental properties of the ILs and the resulting IGs. The IGs obtained from the ILs and the resin show high ionic conductivity of up to ca. 0.7.10(-4) S/cm at room temperature and 3.4-10(-3) S/cm at 90 degrees C. Moreover, the IGs are thermally stable to about 200 degrees C and mechanically robust. Finally, and most importantly, the article demonstrates that the IGs can be molded three-dimensionally using stereolithography. This provides, for the first time, access to IGs with complex 3D shapes with potential application in battery or fuel cell technology.}, language = {en} } @article{TaubertLerouxRabuetal.2019, author = {Taubert, Andreas and Leroux, Fabrice and Rabu, Pierre and de Zea Bermudez, Veronica}, title = {Advanced hybrid nanomaterials}, series = {Beilstein journal of nanotechnology}, volume = {10}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt am Main}, issn = {2190-4286}, doi = {10.3762/bjnano.10.247}, pages = {2563 -- 2567}, year = {2019}, language = {en} } @article{PehLiedelTaubertetal.2017, author = {Peh, Eddie and Liedel, Clemens and Taubert, Andreas and Tauer, Klaus}, title = {Composition inversion to form calcium carbonate mixtures}, series = {CrystEngComm}, volume = {19}, journal = {CrystEngComm}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c7ce00433h}, pages = {3573 -- 3583}, year = {2017}, abstract = {Composition inversion takes place in equimolar solid mixtures of sodium or ammonium carbonate and calcium chloride with respect to the combination of anions and cations leading to the corresponding chloride and calcite in complete conversion. The transformation takes place spontaneously under a variety of different situations, even in a powdery mixture resting under ambient conditions. Powder X-ray diffraction data and scanning electron microscopy micrographs are presented to describe the course of the reaction and to characterize the reaction products. The incomplete reaction in the interspace between two compressed tablets of pure starting materials leads to an electric potential due to the presence of uncompensated charges.}, language = {en} } @article{ZhangWillaSunetal.2017, author = {Zhang, Weiyi and Willa, Christoph and Sun, Jian-Ke and Guterman, Ryan and Taubert, Andreas and Yuan, Jiayin}, title = {Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {124}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.07.059}, pages = {246 -- 251}, year = {2017}, abstract = {4-Methyl-1-vinyl-1,2,4-triazolium triiodide ionic liquid and its polymer poly(4-methyl-1-vinyl-1,2,4-triazolium) triiodide were prepared for the first time from their iodide precursors via the reaction of iodide (I-) with elemental iodine (I-2). The change from iodide to triiodide (I-3(-)) was found to introduce particular variations in the physical properties of these two compounds, including lower melting point/glass transition temperature and altered solubility. The compounds were characterized by single-crystal X-ray diffraction, elemental analysis, and their electrochemical properties examined in solution and in the solid-state. Compared with their iodide analogues, the triiodide salts exhibited lower electrical impedance and higher current in the cyclic voltammetry. We found that poly(4-methyl-1,2,4-triazolium triiodide) was proven to be a promising solid polymer electrolyte candidate. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HentrichBrezesinskiKuebeletal.2017, author = {Hentrich, Doreen and Brezesinski, Gerald and Kuebel, Christian and Bruns, Michael and Taubert, Andreas}, title = {Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and Growth}, series = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, volume = {17}, journal = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, publisher = {American Chemical Society}, address = {Washington}, issn = {1528-7483}, doi = {10.1021/acs.cgd.7b00753}, pages = {5764 -- 5774}, year = {2017}, abstract = {The article describes the phase behavior of cholesteryl hemisuccinate at the air-liquid interface and its effect on calcium phosphate (CP) mineralization. The amphiphile forms stable monolayers with phase transitions at the air-liquid interface from a gas to a tilted liquid-condensed (TLC) and finally to an untilted liquid-condensed (ULC) phase. CP mineralization beneath these monolayers leads to crumpled CP layers made from individual plates. The main crystal phase is octacalcium phosphate (OCP) along with a minor fraction of hydroxyapatite (HAP), as confirmed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, bright field transmission electron microscopy, and electron diffraction.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{GoebelStoltenbergKrehletal.2016, author = {G{\"o}bel, Ronald and Stoltenberg, Marcus and Krehl, Stefan and Biolley, Christine and Rothe, Regina and Schmidt, Bernd and Hesemann, Peter and Taubert, Andreas}, title = {A Modular Approach towards Mesoporous Silica Monoliths with Organically Modified Pore Walls: Nucleophilic Addition, Olefin Metathesis, and Cycloaddition}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, volume = {6}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500638}, pages = {2088 -- 2099}, year = {2016}, abstract = {We have synthesized mesoporous silica (monoliths) with defined surface chemistry by means of a number of addition reactions: (i) coupling of an isocyanate to a surface-immobilized thiol, (ii) addition of an epoxide to a surface-immobilized thiol, (iii) cross-metathesis between two olefins, and (iv) Huisgen [2+3] cycloaddition of an alkyne-functionalized silica monolith with an azide. Functionalization of the mesopores was observed, but there are significant differences between individual approaches. Isocyanate and epoxide additions lead to high degrees of functionalization, whereas olefin metathesis and [2+3] cycloaddition are less effective. We further show that the efficiency of the modification is about twice as high in mesoporous silica particles than in macroscopic silica monoliths.}, language = {en} } @misc{ZehbeKolloscheLardongetal.2017, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400607}, pages = {16}, year = {2017}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} }