@phdthesis{Sarhan2019, author = {Sarhan, Radwan Mohamed}, title = {Plasmon-driven photocatalytic reactions monitored by surface-enhanced Raman spectroscopy}, doi = {10.25932/publishup-43330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433304}, school = {Universit{\"a}t Potsdam}, year = {2019}, abstract = {Plasmonic metal nanostructures can be tuned to efficiently interact with light, converting the photons into energetic charge carriers and heat. Therefore, the plasmonic nanoparticles such as gold and silver nanoparticles act as nano-reactors, where the molecules attached to their surfaces benefit from the enhanced electromagnetic field along with the generated energetic charge carriers and heat for possible chemical transformations. Hence, plasmonic chemistry presents metal nanoparticles as a unique playground for chemical reactions on the nanoscale remotely controlled by light. However, defining the elementary concepts behind these reactions represents the main challenge for understanding their mechanism in the context of the plasmonically assisted chemistry. Surface-enhanced Raman scattering (SERS) is a powerful technique employing the plasmon-enhanced electromagnetic field, which can be used for probing the vibrational modes of molecules adsorbed on plasmonic nanoparticles. In this cumulative dissertation, I use SERS to probe the dimerization reaction of 4-nitrothiophenol (4-NTP) as a model example of plasmonic chemistry. I first demonstrate that plasmonic nanostructures such as gold nanotriangles and nanoflowers have a high SERS efficiency, as evidenced by probing the vibrations of the rhodamine dye R6G and the 4-nitrothiophenol 4-NTP. The high signal enhancement enabled the measurements of SERS spectra with a short acquisition time, which allows monitoring the kinetics of chemical reactions in real time. To get insight into the reaction mechanism, several time-dependent SERS measurements of the 4-NTP have been performed under different laser and temperature conditions. Analysis of the results within a mechanistic framework has shown that the plasmonic heating significantly enhances the reaction rate, while the reaction is probably initiated by the energetic electrons. The reaction was shown to be intensity-dependent, where a certain light intensity is required to drive the reaction. Finally, first attempts to scale up the plasmonic catalysis have been performed showing the necessity to achieve the reaction threshold intensity. Meanwhile, the induced heat needs to quickly dissipate from the reaction substrate, since otherwise the reactants and the reaction platform melt. This study might open the way for further work seeking the possibilities to quickly dissipate the plasmonic heat generated during the reaction and therefore, scaling up the plasmonic catalysis.}, language = {en} } @phdthesis{Yan2019, author = {Yan, Runyu}, title = {Nitrogen-doped and porous carbons towards new energy storage mechanisms for supercapacitors with high energy density}, doi = {10.25932/publishup-43141}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431413}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2019}, abstract = {Supercapacitors are electrochemical energy storage devices with rapid charge/discharge rate and long cycle life. Their biggest challenge is the inferior energy density compared to other electrochemical energy storage devices such as batteries. Being the most widely spread type of supercapacitors, electrochemical double-layer capacitors (EDLCs) store energy by electrosorption of electrolyte ions on the surface of charged electrodes. As a more recent development, Na-ion capacitors (NICs) are expected to be a more promising tactic to tackle the inferior energy density due to their higher-capacity electrodes and larger operating voltage. The charges are simultaneously stored by ion adsorption on the capacitive-type cathode surface and via faradic process in the battery-type anode, respectively. Porous carbon electrodes are of great importance in these devices, but the paramount problems are the facile synthetic routes for high-performance carbons and the lack of fundamental understanding of the energy storage mechanisms. Therefore, the aim of the present dissertation is to develop novel synthetic methods for (nitrogen-doped) porous carbon materials with superior performance, and to reveal a deeper understanding energy storage mechanisms of EDLCs and NICs. The first part introduces a novel synthetic method towards hierarchical ordered meso-microporous carbon electrode materials for EDLCs. The large amount of micropores and highly ordered mesopores endow abundant sites for charge storage and efficient electrolyte transport, respectively, giving rise to superior EDLC performance in different electrolytes. More importantly, the controversial energy storage mechanism of EDLCs employing ionic liquid (IL) electrolytes is investigated by employing a series of porous model carbons as electrodes. The results not only allow to conclude on the relations between the porosity and ion transport dynamics, but also deliver deeper insights into the energy storage mechanism of IL-based EDLCs which is different from the one usually dominating in solvent-based electrolytes leading to compression double-layers. The other part focuses on anodes of NICs, where novel synthesis of nitrogen-rich porous carbon electrodes and their sodium storage mechanism are investigated. Free-standing fibrous nitrogen-doped carbon materials are synthesized by electrospinning using the nitrogen-rich monomer (hexaazatriphenylene-hexacarbonitrile, C18N12) as the precursor followed by condensation at high temperature. These fibers provide superior capacity and desirable charge/discharge rate for sodium storage. This work also allows insights into the sodium storage mechanism in nitrogen-doped carbons. Based on this mechanism, further optimization is done by designing a composite material composed of nitrogen-rich carbon nanoparticles embedded in conductive carbon matrix for a better charge/discharge rate. The energy density of the assembled NICs significantly prevails that of common EDLCs while maintaining the high power density and long cycle life.}, language = {en} } @misc{HeckKanehiraKneippetal.2019, author = {Heck, Christian and Kanehira, Yuya and Kneipp, Janina and Bald, Ilko}, title = {Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures}, series = {Mathematisch-Naturwissenschaftliche Reihe}, journal = {Mathematisch-Naturwissenschaftliche Reihe}, number = {732}, issn = {1866-8372}, doi = {10.25932/publishup-43081}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430812}, pages = {10}, year = {2019}, abstract = {Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates.}, language = {en} } @misc{AbbasVranicHoffmannetal.2019, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {701}, issn = {1866-8372}, doi = {10.25932/publishup-42792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427926}, year = {2019}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} }