@article{SchwanghartBernhardtStolleetal.2016, author = {Schwanghart, Wolfgang and Bernhardt, Anne and Stolle, Amelie and Hoelzmann, Philipp and Adhikari, Basanta R. and Andermann, Christoff and Tofelde, Stefanie and Merchel, Silke and Rugel, Georg and Fort, Monique and Korup, Oliver}, title = {Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya}, series = {Science}, volume = {351}, journal = {Science}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aac9865}, pages = {147 -- 150}, year = {2016}, abstract = {Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away.}, language = {en} } @article{NietoMorenoRohrmannvanderMeeretal.2016, author = {Nieto-Moreno, Vanesa and Rohrmann, Alexander and van der Meer, Marcel T. J. and Damste, Jaap S. Sinninghe and Sachse, Dirk and Tofelde, Stefanie and Niedermeyer, Eva M. and Strecker, Manfred and Mulch, Andreas}, title = {Elevation-dependent changes in n-alkane delta D and soil GDGTs across the South Central Andes}, series = {Earth \& planetary science letters}, volume = {453}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.07.049}, pages = {234 -- 242}, year = {2016}, abstract = {Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present delta D values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28 degrees S) and a valley (22-24 degrees S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane delta D values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a delta D lapse rate (A(delta D)) of -1.64 parts per thousand/100 m (R-2 = 0.91, p < 0.01) at the hillslope transect, within the range of delta D lapse rates from precipitation and surface waters in other tropical regions in the Andes like the Eastern Cordillera in Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of Delta T = -0.51 degrees C/100 m (R-2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite derived land-surface temperatures at this transect, and weather stations from the Eastern Cordillera at similar latitude. As a result of an increasing leeward sampling position along the valley transect lapse rates are biased towards lower values and display higher scatter (Delta(delta D) = -0.9 parts per thousand/100 m, R-2 = 0.76, p < 0.01 and Delta T = -0.19 degrees C/100 m, R-2 = 0.48, p < 0.05). Despite this higher complexity, they are in line with lapse rates from stream-water samples and in situ soil temperature measurements along the same transect. Our results demonstrate that both soil n-alkane delta D values and MAT reconstructions based on brGDGTs distributions from the hillslope transect (Delta(delta D) = -1.64 parts per thousand/100 m, R-2 = 0.91, p < 0.01 and Delta T = -0.51 degrees C/100 m, R-2 = 0.91, p < 0.01) track the direct effects of orography on precipitation and temperature and hence the combined effects of local and regional hydrology as well as elevation. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{RohrmannSachseMulchetal.2016, author = {Rohrmann, Alexander and Sachse, Dirk and Mulch, Andreas and Pingel, Heiko and Tofelde, Stefanie and Alonso, Ricardo N. and Strecker, Manfred}, title = {Miocene orographic uplift forces rapid hydrological change in the southern central Andes}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep35678}, pages = {4283 -- 4306}, year = {2016}, abstract = {Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes.}, language = {en} } @article{SaviSchildgenTofeldeetal.2016, author = {Savi, Sara and Schildgen, Taylor F. and Tofelde, Stefanie and Wittmann, Hella and Scherler, Dirk and Mey, J{\"u}rgen and Alonso, Ricardo N. and Strecker, Manfred}, title = {Climatic controls on debris-flow activity and sediment aggradation: The Del Medio fan, NW Argentina}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF003912}, pages = {2424 -- 2445}, year = {2016}, abstract = {In the Central Andes, several studies on alluvial terraces and valley fills have linked sediment aggradation to periods of enhanced sediment supply. However, debate continues over whether tectonic or climatic factors are most important in triggering the enhanced supply. The Del Medio catchment in the Humahuaca Basin (Eastern Cordillera, NW Argentina) is located within a transition zone between subhumid and arid climates and hosts the only active debris-flow fan within this intermontane valley. By combining Be-10 analyses of boulder and sediment samples within the Del Medio catchment, with regional morphometric measurements of nearby catchments, we identify the surface processes responsible for aggradation in the Del Medio fan and their likely triggers. We find that the fan surface has been shaped by debris flows and channel avulsions during the last 400 years. Among potential tectonic, climatic, and autogenic factors that might influence deposition, our analyses point to a combination of several favorable factors that drive aggradation. These are in particular the impact of occasional abundant rainfall on steep slopes in rock types prone to failure, located in a region characterized by relatively low rainfall amounts and limited transport capacity. These characteristics are primarily associated with the climatic transition zone between the humid foreland and the arid orogen interior, which creates an imbalance between sediment supply and sediment transfer. The conditions and processes that drive aggradation in the Del Medio catchment today may provide a modern analog for the conditions and processes that drove aggradation in other nearby tributaries in the past.}, language = {en} } @article{SchildgenRobinsonSavietal.2016, author = {Schildgen, Taylor F. and Robinson, Ruth A. J. and Savi, Sara and Phillips, William M. and Spencer, Joel Q. G. and Bookhagen, Bodo and Scherler, Dirk and Tofelde, Stefanie and Alonso, Ricardo N. and Kubik, Peter W. and Binnie, Steven A. and Strecker, Manfred}, title = {Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2015JF003607}, pages = {392 -- 414}, year = {2016}, abstract = {Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated.}, language = {en} }