@article{IskenVasyuraBathkeDahmetal.2022, author = {Isken, Marius Paul and Vasyura-Bathke, Hannes and Dahm, Torsten and Heimann, Sebastian}, title = {De-noising distributed acoustic sensing data using an adaptive frequency-wavenumber filter}, series = {Geophysical journal international}, volume = {231}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggac229}, pages = {944 -- 949}, year = {2022}, abstract = {Data recorded by distributed acoustic sensing (DAS) along an optical fibre sample the spatial and temporal properties of seismic wavefields at high spatial density. Often leading to massive amount of data when collected for seismic monitoring along many kilometre long cables. The spatially coherent signals from weak seismic arrivals within the data are often obscured by incoherent noise. We present a flexible and computationally efficient filtering technique, which makes use of the dense spatial and temporal sampling of the data and that can handle the large amount of data. The presented adaptive frequency-wavenumber filter suppresses the incoherent seismic noise while amplifying the coherent wavefield. We analyse the response of the filter in time and spectral domain, and we demonstrate its performance on a noisy data set that was recorded in a vertical borehole observatory showing active and passive seismic phase arrivals. Lastly, we present a performant open-source software implementation enabling real-time filtering of large DAS data sets.}, language = {en} } @article{NiemzCescaHeimannetal.2020, author = {Niemz, Peter and Cesca, Simone and Heimann, Sebastian and Grigoli, Francesco and von Specht, Sebastian and Hammer, Conny and Zang, Arno and Dahm, Torsten}, title = {Full-waveform-based characterization of acoustic emission activity in a mine-scale experiment}, series = {Geophysical journal international / the Royal Astronomical Society, the Deutsche Geophysikalische Gesellschaft and the European Geophysical Society}, volume = {222}, journal = {Geophysical journal international / the Royal Astronomical Society, the Deutsche Geophysikalische Gesellschaft and the European Geophysical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0955-419X}, doi = {10.1093/gji/ggaa127}, pages = {189 -- 206}, year = {2020}, abstract = {Understanding fracturing processes and the hydromechanical relation to induced seismicity is a key question for enhanced geothermal systems (EGS). Commonly massive fluid injection, predominately causing hydroshearing, are used in large-scale EGS but also hydraulic fracturing approaches were discussed. To evaluate the applicability of hydraulic fracturing techniques in EGS, six in situ, multistage hydraulic fracturing experiments with three different injection schemes were performed under controlled conditions in crystalline rock at the Aspo Hard Rock Laboratory (Sweden). During the experiments the near-field ground motion was continuously recorded by 11 piezoelectric borehole sensors with a sampling rate of 1 MHz. The sensor network covered a volume of 30x30x30 m around a horizontal, 28-m-long injection borehole at a depth of 410 m. To extract and characterize massive, induced, high-frequency acoustic emission (AE) activity from continuous recordings, a semi-automated workflow was developed relying on full waveform based detection, classification and location procedures. The approach extended the AE catalogue from 196 triggered events in previous studies to more than 19600 located AEs. The enhanced catalogue, for the first time, allows a detailed analysis of induced seismicity during single hydraulic fracturing experiments, including the individual fracturing stages and the comparison between injection schemes. Beside the detailed study of the spatio-temporal patterns, event clusters and the growth of seismic clouds, we estimate relative magnitudes and b-values of AEs for conventional, cyclic progressive and dynamic pulse injection schemes, the latter two being fatigue hydraulic fracturing techniques. While the conventional fracturing leads to AE patterns clustered in planar regions, indicating the generation of a single main fracture plane, the cyclic progressive injection scheme results in a more diffuse, cloud-like AE distribution, indicating the activation of a more complex fracture network. For a given amount of hydraulic energy (pressure multiplied by injected volume) pumped into the system, the cyclic progressive scheme is characterized by a lower rate of seismicity, lower maximum magnitudes and significantly larger b-values, implying an increased number of small events relative to the large ones. To our knowledge, this is the first direct comparison of high resolution seismicity in a mine-scale experiment induced by different hydraulic fracturing schemes.}, language = {en} } @article{TrauthAsratDuesingetal.2019, author = {Trauth, Martin H. and Asrat, Asfawossen and D{\"u}sing, Walter and Foerster, Verena and Kr{\"a}mer, K. Hauke and Marwan, Norbert and Maslin, Mark A. and Sch{\"a}bitz, Frank}, title = {Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recurrence quantification analysis}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {53}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-019-04641-3}, pages = {2557 -- 2572}, year = {2019}, abstract = {The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and evolution in Africa through the analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin. In this statistical project we consider the Chew Bahir palaeolake to be a dynamical system consisting of interactions between its different components, such as the waterbody, the sediment beneath lake, and the organisms living within and around the lake. Recurrence is a common feature of such dynamical systems, with recurring patterns in the state of the system reflecting typical influences. Identifying and defining these influences contributes significantly to our understanding of the dynamics of the system. Different recurring changes in precipitation, evaporation, and wind speed in the Chew Bahir basin could result in similar (but not identical) conditions in the lake (e.g., depth and area of the lake, alkalinity and salinity of the lake water, species assemblages in the water body, and diagenesis in the sediments). Recurrence plots (RPs) are graphic displays of such recurring states within a system. Measures of complexity were subsequently introduced to complement the visual inspection of recurrence plots, and provide quantitative descriptions for use in recurrence quantification analysis (RQA). We present and discuss herein results from an RQA on the environmental record from six short (< 17 m) sediment cores collected during the CBDP, spanning the last 45 kyrs. The different types of variability and transitions in these records were classified to improve our understanding of the response of the biosphere to climate change, and especially the response of humans in the area.}, language = {en} } @article{PlatzWeckmann2019, author = {Platz, Anna and Weckmann, Ute}, title = {An automated new pre-selection tool for noisy Magnetotelluric data using the Mahalanobis distance and magnetic field constraints}, series = {Geophysical journal international}, volume = {218}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggz197}, pages = {1853 -- 1872}, year = {2019}, abstract = {In Magnetotellurics (MT) natural electromagnetic field variations are recorded to study the electrical conductivity structure of the subsurface. Thereby long time-series of electromagnetic data are subdivided into smaller segments, which are Fourier transformed and typically averaged in a statistically robust manner to obtain MT transfer functions. Unfortunately, nowadays the presence of man-made electromagnetic noise sources often deteriorates a significant fraction of the recorded time-series by overprinting the desired natural field variations. Available approaches to obtain undisturbed and high quality MT results include, for example robust statistics, remote reference or multi-station analyses which aim at the removal of outliers or uncorrelated noise. However, we have observed that intermittent noise often affects a certain time span resulting in a second cluster of transfer functions in addition to the expected true MT distribution. In this paper, we present a novel criterion for the detection and pre-selection of EM noise in form of outliers or additional clusters based on a distance measure of each data segment with regard to the centre of the data distribution. For this purpose, we utilize the Mahalanobis distance (MD) which computes the distance between two multivariate points considering the covariance matrix of the data that quantifies the shape and the size of multivariate data distributions. As the MD considers the covariance matrix, it corrects not only for different variances but also for any correlation between the data. The computation of both, the mean value and covariance matrix, is susceptible to ouliers (e.g. noise) and requires a statistically robust estimation. We tested several robust estimators, for example median absolute deviation or minimum covariance determinant algorithm and finally implemented an automatic criterion using a deterministic minimum covariance determinant algorithm. We will present results using MT data from various field experiments all over the world, which illustrate successfull data improvement. This approach is able to remove scattered data points as well as to reject complete data cluster originating from noise sources. However, like all purely statistical algorithms the criterion is limited to cases where the majority of the recorded data is well-behaved, that is noise content is below 50 per cent. If the majority of data points originates from noise sources, the new criterion will fail if used in an automatic way. In these cases, additional input by the user either manually or in an automated fashion can be utilized. We therefore suggest to use an add-on criterion to back the MD selection and subsequent robust stacking in form of a physically motivated constraint based on the magnetic incidence direction. This property indicates whether the magnetic field originates from various sources in the far field or from a strong and well defined source in the near field.}, language = {en} } @article{WatheletGuillierRouxetal.2018, author = {Wathelet, Marc and Guillier, B. and Roux, P. and Cornou, C. and Ohrnberger, Matthias}, title = {Rayleigh wave three-component beamforming}, series = {Geophysical journal international}, volume = {215}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy286}, pages = {507 -- 523}, year = {2018}, abstract = {The variation of Rayleigh ellipticity versus frequency is gaining popularity in site characterization. It becomes a necessary observable to complement dispersion curves when inverting shear wave velocity profiles. Various methods have been proposed so far to extract polarization from ambient vibrations recorded on a single three-component station or with an array of three-component sensors. If only absolute values were recovered 10 yr ago, new array-based techniques were recently proposed with enhanced efficiencies providing also the ellipticity sign. With array processing, higher-order modes are often detected even in the ellipticity domain. We suggest to explore the properties of a high-resolution beamforming where radial and vertical components are explicitly included. If N is the number of three-component sensors, 2N x 2N cross-spectral density matrices are calculated for all presumed directions of propagation. They are built with N radial and N vertical channels. As a first approach, steering vectors are designed to fit with Rayleigh wave properties: the phase shift between radial and vertical components is either -Pi/2 or Pi/2. We show that neglecting the ellipticity tilt due to attenuation has only minor effects on the results. Additionally, we prove analytically that it is possible to retrieve the ellipticity value from the usual maximization of the high-resolution beam power. The method is tested on synthetic data sets and on experimental data. Both are reference sites already analysed by several authors. A detailed comparison with previous results on these cases is provided.}, language = {en} } @article{HendriyanaBauerMuksinetal.2018, author = {Hendriyana, Andri and Bauer, Klaus and Muksin, Umar and Weber, Michael}, title = {AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)}, series = {Geophysical journal international}, volume = {213}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy045}, pages = {952 -- 962}, year = {2018}, abstract = {We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P-and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.}, language = {en} } @article{LetortRetailleauBoueetal.2018, author = {Letort, Jean and Retailleau, Lise and Boue, Pierre and Radiguet, Mathilde and Gardonio, Blandine and Cotton, Fabrice Pierre and Campillo, Michel}, title = {Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (M(b)3.5+) detected on a single array at teleseismic distance}, series = {Geophysical journal international}, volume = {213}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy035}, pages = {1002 -- 1012}, year = {2018}, abstract = {Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude M-b 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 M-b 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events.}, language = {en} } @article{PickKorte2017, author = {Pick, Leonie and Korte, Monika}, title = {An annual proxy for the geomagnetic signal of magnetospheric currents on Earth based on observatory data from 1900-2010}, series = {Geophysical Journal International}, volume = {211}, journal = {Geophysical Journal International}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1365-246X}, doi = {10.1093/gji/ggx367}, pages = {1223 -- 1236}, year = {2017}, abstract = {We introduce the Annual Magnetospheric Currents index as long-term proxy for the geomagnetic signal of magnetospheric currents on Earth valid within the time span 1900-2010. Similar to the widely used disturbance storm time and 'Ring Current' indices, it is based on geomagnetic observatory data, but provides a realistic absolute level and uncertainty estimates. Crucial aspects to this end are the revision of observatory crustal biases as well as the implementation of a Bayesian inversion accounting for uncertainties in the main field estimate, both required for the index derivation. The observatory choice is based on a minimization of index variance during a reference period spanning 1960-2010. The new index is capable of correcting observatory time series from large-scale external signals in a user-friendly manner. At present the index is only available as annual mean values. An extension to hourly values for the same time span is in progress.}, language = {en} } @article{HannemannKruegerDahmetal.2016, author = {Hannemann, Katrin and Kr{\"u}ger, Frank and Dahm, Torsten and Lange, Dietrich}, title = {Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor}, series = {Geophysical journal international}, volume = {207}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggw342}, pages = {1796 -- 1817}, year = {2016}, abstract = {Our knowledge of the absolute S-wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S-wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P-wave polarization (apparent P-wave incidence angle) of teleseismic events to investigate the S-wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P-wave incidence angle at the ocean bottom dependent on the half-space S-wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBSs) to derive apparent S-wave velocity profiles. These profiles are dependent on the S-wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P-wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S-wave-velocity-depth models by a three-step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S-wave velocities. The apparent S-wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 and 0.9 km with S-wave velocities between 0.7 and 1.4 km s(-1). The estimated total crustal thickness varies between 4 and 10 km with S-wave velocities between 3.5 and 4.3 km s(-1). We find a slight increase of the total crustal thickness from similar to 5 to similar to 8 km towards the South in the direction of a major plate boundary, the Gloria Fault. The observed crustal thickening can be related with the known dominant compression in the vicinity of the fault. Furthermore, the resulting mantle S-wave velocities decrease from values around 5.5 to 4.5 km s(-1) towards the fault. This decrease is probably caused by serpentinization and indicates that the oceanic transform fault affects a broad region in the uppermost mantle. Conclusively, the presented method is useful for the estimation of the local S-wave velocity structure beneath ocean bottom seismic stations. It is easy to implement and consists of two main steps: (1) measurement of apparent P-wave incidence angles in different period ranges for real and synthetic data, and (2) comparison of the determined apparent S-wave velocities for real and synthetic data to estimate S-wave velocity-depth models.}, language = {en} } @article{GrigoliCescaAmorosoetal.2014, author = {Grigoli, Francesco and Cesca, Simone and Amoroso, Ortensia and Emolo, Antonio and Zollo, Aldo and Dahm, Torsten}, title = {Automated seismic event location by waveform coherence analysis}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt477}, pages = {1742 -- 1753}, year = {2014}, abstract = {Automated location of seismic events is a very important task in microseismic monitoring operations as well for local and regional seismic monitoring. Since microseismic records are generally characterized by low signal-to-noise ratio, automated location methods are requested to be noise robust and sufficiently accurate. Most of the standard automated location routines are based on the automated picking, identification and association of the first arrivals of P and S waves and on the minimization of the residuals between theoretical and observed arrival times of the considered seismic phases. Although current methods can accurately pick P onsets, the automatic picking of the S onset is still problematic, especially when the P coda overlaps the S wave onset. In this paper, we propose a picking free earthquake location method based on the use of the short-term-average/long-term-average (STA/LTA) traces at different stations as observed data. For the P phases, we use the STA/LTA traces of the vertical energy function, whereas for the S phases, we use the STA/LTA traces of a second characteristic function, which is obtained using the principal component analysis technique. In order to locate the seismic event, we scan the space of possible hypocentral locations and origin times, and stack the STA/LTA traces along the theoretical arrival time surface for both P and S phases. Iterating this procedure on a 3-D grid, we retrieve a multidimensional matrix whose absolute maximum corresponds to the spatial coordinates of the seismic event. A pilot application was performed in the Campania-Lucania region (southern Italy) using a seismic network (Irpinia Seismic Network) with an aperture of about 150 km. We located 196 crustal earthquakes (depth < 20 km) with magnitude range 1.1 < M-L < 2.7. A subset of these locations were compared with accurate manual locations refined by using a double-difference technique. Our results indicate a good agreement with manual locations. Moreover, our method is noise robust and performs better than classical location methods based on the automatic picking of the P and S waves first arrivals.}, language = {en} } @article{HannemannKruegerDahm2014, author = {Hannemann, Katrin and Kr{\"u}ger, Frank and Dahm, Torsten}, title = {Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt434}, pages = {1034 -- 1042}, year = {2014}, abstract = {Marine seismology usually relies on temporary deployments of stand alone seismic ocean bottom stations (OBS), which are initialized and synchronized on ship before deployment and re-synchronized and stopped on ship after recovery several months later. In between, the recorder clocks may drift and float at unknown rates. If the clock drifts are large or not linear and cannot be corrected for, seismological applications will be limited to methods not requiring precise common timing. Therefore, for example, array seismological methods, which need very accurate timing between individual stations, would not be applicable for such deployments. We use an OBS test-array of 12 stations and 75 km aperture, deployed for 10 months in the deep sea (4.5-5.5 km) of the mid-eastern Atlantic. The experiment was designed to analyse the potential of broad-band array seismology at the seafloor. After recovery, we identified some stations which either show unusual large clock drifts and/or static time offsets by having a large difference between the internal clock and the GPS-signal (skew). We test the approach of ambient noise cross-correlation to synchronize clocks of a deep water OBS array with km-scale interstation distances. We show that small drift rates and static time offsets can be resolved on vertical components with a standard technique. Larger clock drifts (several seconds per day) can only be accurately recovered if time windows of one input trace are shifted according to the expected drift between a station pair before the cross-correlation. We validate that the drifts extracted from the seismometer data are linear to first order. The same is valid for most of the hydrophones. Moreover, we were able to determine the clock drift at a station where no skew could be measured. Furthermore, we find that instable apparent drift rates at some hydrophones, which are uncorrelated to the seismometer drift recorded at the same digitizer, indicate a malfunction of the hydrophone.}, language = {en} } @article{BeyreutherHammerWassermannetal.2012, author = {Beyreuther, Moritz and Hammer, Conny and Wassermann, Joachim and Ohrnberger, Matthias and Megies, Tobias}, title = {Constructing a hidden Markov Model based earthquake detector: application to induced seismicity}, series = {Geophysical journal international}, volume = {189}, journal = {Geophysical journal international}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2012.05361.x}, pages = {602 -- 610}, year = {2012}, abstract = {The triggering or detection of seismic events out of a continuous seismic data stream is one of the key issues of an automatic or semi-automatic seismic monitoring system. In the case of dense networks, either local or global, most of the implemented trigger algorithms are based on a large number of active stations. However, in the case of only few available stations or small events, for example, like in monitoring volcanoes or hydrothermal power plants, common triggers often show high false alarms. In such cases detection algorithms are of interest, which show reasonable performance when operating even on a single station. In this context, we apply Hidden Markov Models (HMM) which are algorithms borrowed from speech recognition. However, many pitfalls need to be avoided to apply speech recognition technology directly to earthquake detection. We show the fit of the model parameters in an innovative way. State clustering is introduced to refine the intrinsically assumed time dependency of the HMMs and we explain the effect coda has on the recognition results. The methodology is then used for the detection of anthropogenicly induced earthquakes for which we demonstrate for a period of 3.9 months of continuous data that the single station HMM earthquake detector can achieve similar detection rates as a common trigger in combination with coincidence sums over two stations. To show the general applicability of state clustering we apply the proposed method also to earthquake classification at Mt. Merapi volcano, Indonesia.}, language = {en} }