@phdthesis{FloresSuarez2011, author = {Flores Su{\´a}rez, Rosaura}, title = {Three-dimensional polarization probing in polymer ferroelectrics, polymer-dispersed liquid crystals, and polymer ferroelectrets}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60173}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {A key non-destructive technique for analysis, optimization and developing of new functional materials such as sensors, transducers, electro-optical and memory devices is presented. The Thermal-Pulse Tomography (TPT) provides high-resolution three-dimensional images of electric field and polarization distribution in a material. This thermal technique use a pulsed heating by means of focused laser light which is absorbed by opaque electrodes. The diffusion of the heat causes changes in the sample geometry, generating a short-circuit current or change in surface potential, which contains information about the spatial distribution of electric dipoles or space charges. Afterwards, a reconstruction of the internal electric field and polarization distribution in the material is possible via Scale Transformation or Regularization methods. In this way, the TPT was used for the first time to image the inhomogeneous ferroelectric switching in polymer ferroelectric films (candidates to memory devices). The results shows the typical pinning of electric dipoles in the ferroelectric polymer under study and support the previous hypotheses of a ferroelectric reversal at a grain level via nucleation and growth. In order to obtain more information about the impact of the lateral and depth resolution of the thermal techniques, the TPT and its counterpart called Focused Laser Intensity Modulation Method (FLIMM) were implemented in ferroelectric films with grid-shaped electrodes. The results from both techniques, after the data analysis with different regularization and scale methods, are in total agreement. It was also revealed a possible overestimated lateral resolution of the FLIMM and highlights the TPT method as the most efficient and reliable thermal technique. After an improvement in the optics, the Thermal-Pulse Tomography method was implemented in polymer-dispersed liquid crystals (PDLCs) films, which are used in electro-optical applications. The results indicated a possible electrostatic interaction between the COH group in the liquid crystals and the fluorinate atoms of the used ferroelectric matrix. The geometrical parameters of the LC droplets were partially reproduced as they were compared with Scanning Electron Microscopy (SEM) images. For further applications, it is suggested the use of a non-strong-ferroelectric polymer matrix. In an effort to develop new polymerferroelectrets and for optimizing their properties, new multilayer systems were inspected. The results of the TPT method showed the non-uniformity of the internal electric-field distribution in the shaped-macrodipoles and thus suggested the instability of the sample. Further investigation on multilayers ferroelectrets was suggested and the implementation of less conductive polymers layers too.}, language = {en} } @phdthesis{Ganesan2010, author = {Ganesan, Lakshmi Meena}, title = {Coupling of the electrical, mechanical and optical response in polymer/liquid-crystal composites}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41572}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Micrometer-sized liquid-crystal (LC) droplets embedded in a polymer matrix may enable optical switching in the composite film through the alignment of the LC director along an external electric field. When a ferroelectric material is used as host polymer, the electric field generated by the piezoelectric effect can orient the director of the LC under an applied mechanical stress, making these materials interesting candidates for piezo-optical devices. In this work, polymer-dispersed liquid crystals (PDLCs) are prepared from poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and a nematic liquid crystal (LC). The anchoring effect is studied by means of dielectric relaxation spectroscopy. Two dispersion regions are observed in the dielectric spectra of the pure P(VDF-TrFE) film. They are related to the glass transition and to a charge-carrier relaxation, respectively. In PDLC films containing 10 and 60 wt\% LC, an additional, bias-field-dependent relaxation peak is found that can be attributed to the motion of LC molecules. Due to the anchoring effect of the LC molecules, this relaxation process is slowed down considerably, when compared with the related process in the pure LC. The electro-optical and piezo-optical behavior of PDLC films containing 10 and 60 wt\% LCs is investigated. In addition to the refractive-index mismatch between the polymer matrix and the LC molecules, the interaction between the polymer dipoles and the LC molecules at the droplet interface influences the light-scattering behavior of the PDLC films. For the first time, it was shown that the electric field generated by the application of a mechanical stress may lead to changes in the transmittance of a PDLC film. Such a piezo-optical PDLC material may be useful e.g. in sensing and visualization applications. Compared to a non-polar matrix polymer, the polar matrix polymer exhibits a strong interaction with the LC molecules at the polymer/LC interface which affects the electro-optical effect of the PDLC films and prevents a larger increase in optical transmission.}, language = {en} }