@phdthesis{Rikani2023, author = {Rikani, Albano}, title = {Modeling global human migration dynamics under climate change}, doi = {10.25932/publishup-58321}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583212}, school = {Universit{\"a}t Potsdam}, pages = {x, 133}, year = {2023}, abstract = {International migration has been an increasing phenomenon during the past decades and has involved all the regions of the globe. Together with fertility and mortality rates, net migration rates represent the components that fully define the demographic evolution of the population in a country. Therefore, being able to capture the patterns of international migration flows and to produce projections of how they might change in the future is of relevant importance for demographic studies and for designing policies informed on the potential scenarios. Existing forecasting methods do not account explicitly for the main drivers and processes shaping international migration flows: existing migrant communities at the destination country, termed diasporas, would reduce the costs of migration and facilitate the settling for new migrants, ultimately producing a positive feedback; accounting for the heterogeneity in the type of migration flows, e.g. return and transit Ćows, becomes critical in some specific bilateral migration channels; in low- to middle- income countries economic development could relax poverty constraint and result in an increase of emigration rates. Economic conditions at both origin and destination are identified as major drivers of international migration. At the same time, climate change impacts have already appeared on natural and human-made systems such as the economic productivity. These economic impacts might have already produced a measurable effect on international migration flows. Studies that provide a quantification of the number of migration moves that might have been affected by climate change are usually specific to small regions, do not provide a mechanistic understanding of the pathway leading from climate change to migration and restrict their focus to the effective induced flows, disregarding the impact that climate change might have had in inhibiting other flows. Global climate change is likely to produce impacts on the economic development of the countries during the next decades too. Understanding how these impacts might alter future global migration patterns is relevant for preparing future societies and understanding whether the response in migration flows would reduce or increase population's exposure to climate change impacts. This doctoral research aims at investigating these questions and fill the research gaps outlined above. First, I have built a global bilateral international migration model which accounts explicitly for the diaspora feedback, distinguishes between transit and return flows, and accounts for the observed non-linear effects that link emigration rates to income levels in the country of origin. I have used this migration model within a population dynamic model where I account also for fertility and mortality rates, producing hindcasts and future projections of international migration flows, covering more than 170 countries. Results show that the model reproduces past patterns and trends well. Future projections highlight the fact that,depending on the assumptions regarding future evolution of income levels and between-country inequality, migration at the end of the century might approach net zero or be still high in many countries. The model, parsimonious in the explanatory variables that includes, represents a versatile tool for assessing the impacts of different socioeconomic scenarios on international migration. I consider then a counterfactual past without climate change impacts on the economic productivity. By prescribing these counterfactual economic conditions to the migration model I produce counterfactual migration flows for the past 30 years. I compare the counterfactual migration flows to factual ones, where historical economic conditions are used to produce migration flows. This provides an estimation of the recent international migration flows attributed to climate change impacts. Results show that a counterfactual world without climate change would have seen less migration globally. This effect becomes larger if I consider separately the increase and decrease in migration moves: a Ągure of net change in the migration flows is not representative of the effective magnitude of the climate change impact on migration. Indeed, in my results climate change produces a divergent effect on richer and poorer countries: by slowing down the economic development, climate change might have reduced international mobility from and to countries of the Global South, and increased it from and to richer countries in the Global North. I apply the same methodology to a scenario of future 3℃ global warming above pre-industrial conditions. I Ąnd that climate change impacts, acting by reorganizing the relative economic attractiveness of destination countries or by affecting the economic growth in the origin, might produce a substantial effect in international migration flows, inhibiting some moves and inducing others. Overall my results suggest that climate change might have had and might have in the future a significant effect on global patterns of international migration. It also emerges clearly that, for a comprehensive understanding of the effects of climate change on international migration, we need to go beyond net effects and consider separately induced and inhibited flows.}, language = {en} }