@phdthesis{Bano2023, author = {Bano, Dorina}, title = {Discovering data models from event logs}, doi = {10.25932/publishup-58542}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585427}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 137}, year = {2023}, abstract = {In the last two decades, process mining has developed from a niche discipline to a significant research area with considerable impact on academia and industry. Process mining enables organisations to identify the running business processes from historical execution data. The first requirement of any process mining technique is an event log, an artifact that represents concrete business process executions in the form of sequence of events. These logs can be extracted from the organization's information systems and are used by process experts to retrieve deep insights from the organization's running processes. Considering the events pertaining to such logs, the process models can be automatically discovered and enhanced or annotated with performance-related information. Besides behavioral information, event logs contain domain specific data, albeit implicitly. However, such data are usually overlooked and, thus, not utilized to their full potential. Within the process mining area, we address in this thesis the research gap of discovering, from event logs, the contextual information that cannot be captured by applying existing process mining techniques. Within this research gap, we identify four key problems and tackle them by looking at an event log from different angles. First, we address the problem of deriving an event log in the absence of a proper database access and domain knowledge. The second problem is related to the under-utilization of the implicit domain knowledge present in an event log that can increase the understandability of the discovered process model. Next, there is a lack of a holistic representation of the historical data manipulation at the process model level of abstraction. Last but not least, each process model presumes to be independent of other process models when discovered from an event log, thus, ignoring possible data dependencies between processes within an organization. For each of the problems mentioned above, this thesis proposes a dedicated method. The first method provides a solution to extract an event log only from the transactions performed on the database that are stored in the form of redo logs. The second method deals with discovering the underlying data model that is implicitly embedded in the event log, thus, complementing the discovered process model with important domain knowledge information. The third method captures, on the process model level, how the data affects the running process instances. Lastly, the fourth method is about the discovery of the relations between business processes (i.e., how they exchange data) from a set of event logs and explicitly representing such complex interdependencies in a business process architecture. All the methods introduced in this thesis are implemented as a prototype and their feasibility is proven by being applied on real-life event logs.}, language = {en} }